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Abstract

We study classes of matrices defined by various normality properties with respect to an
indefinite (complex) inner product. The relationships between many such properties, all of
them equivalent to the normality in case of a definite inner product, are described. In particular,
a “canonical form” is developed for the class of matrices that are polynomials of a self-adjoint
matrix. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

An indefinite inner producin C" (where byC we denote the field of complex
numbers) is a sesquilinear fofm, y], x, y € C", defined by an equation
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[x,y]=<HX,)’>a x’yeﬂ:n_ (11)

Here (., ) is the standard Euclidean inner productGfi, and His an invertible
Hermitian matrixH € C"**". For a matrixX € C"**", we denote byX*1# or, if

there is no risk of confusion, by, the adjoint ofX with respect toH, or, in

short,H-adjoint; that isX*] := H~1X*H. Here and throughout the pap&t* stands
for the conjugate transpose of the matkix A matrix X € C"*" is calledH-self-

adjointif X = X*I, H-skewadjointf X = —X*I, and H-unitaryif X is invertible
and X" = x—1. A more general class dfi-normal matricesX is defined by the
property thatX commutes withx 1,

In recent years, normal matrices with respect to an indefinite inner product have
been intensively studied, from various points of view: classification [9—-11,13-15,22],
numerical ranges [18,20], and polar decompositions [3,21]. The general problem of
classification oH-normal matrices has been posed in [8].

In case of the definite inner product (# I, or, more generallyH is a definite
matrix), the property of being ad-normal matrix can be expressed in many equiv-
alent ways, see [5,12]. In contrast, in the indefinite case many of these ways are not
equivalent anymore, and define various classes of matrices. In this paper, we consider
in the context of indefinite inner products many statements that are equivalent to
normality in the case of definite inner products. In Section 3 we classify the classes
of matrices defined by these statements in relation to the class¢self-adjoint,
H-skewadjointH-unitary, andH-normal matrices.

One important motivation for this classification comes from the problem of find-
ing a canonical form foH-normal matrices. FoH-self-adjoint andH-skewadjoint
matrices, there exist well-known canonical forms (see Theorem 1 in Section 2 for
the H-self-adjoint matrices, and [24], for example, for tHeskewadjoint matrices).
Canonical forms have also been developedHeunitary matrices [8,10], and for
block-ToeplitzH-normal matrices that have been introduced and studied in [10,11].
On the other hand, in [9] it was shown that the problem of finding a canonical form
for generaH-normal matrices is at least as complicated as finding a canonical form
for a pair of commuting matrices under simultaneous similarity. Thus, the problem
seems to be unsolvable from a certain point of view, although in the particular cases
whenH has not more than two negative eigenvalues the problem was resolved com-
pletely [9,14,15]. Therefore, it makes sense to study the proper subclasses of the
class ofH-normal matrices that contain dl-self-adjoint,H-skewadjoint, andH-
unitary matrices. These classes are in particular the class of polynoiialbymal
matricesX, which are defined by the property th&t*! is a polynomial ofX, and
the class of polynomials dfl-self-adjoint (or ofH-skewadjoint) matrices. We focus
on these classes in Section 4, where we prove in particular that every polynomially
H-normal matrix is block-Toeplitz and give a canonical form for matrices that are
polynomials ofH-self-adjoints.

Throughout the papel denotes a Hermitian x n nonsingular complex matrix
if it is not explicitly stated otherwise. Furthermore, we use the following notation:
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N ={1,2,...}, Risthe field of real numbersg, is thep x p identity matrix..# ,(1)
is thep x p upper triangular Jordan block with eigenvalueZ , is thep x p matrix
with ones on the main anti-diagonal and zeros elsewhere, i.e.,

0 1

Z,= -
1 0
pxp

For agivenX € C**" we denote byl x andSy theH-self-adjoint andH-skewadjoint
parts ofX, respectively, i.e.,

Ay = % (X + X[*]) and Sy = % <X - x[*J).

X1 6 --- ® X stands for the block diagonal matrix with the diagonal blakks. . .,
Xy (in that order).

By o (M), we denote the spectrum, i.e., the set of eigenvalues, of the rivatdn
occasions, we would like to indicate not only the eigenvalues, but also their algebraic
multiplicities. For that purpose, for anx n matrix M, we use the notation

Gm(M) = {)"17 "'a)"n}a

where the right-hand side is a multiset (i.e., repetitions of elements are allowed) of
eigenvalues oM in which every eigenvalue is repeated according to its algebraic
multiplicity.

2. Preliminaries

In this section we will review several forms of decompositionsHeself-adjoint
andH-normal matrices. We start witH-self-adjoints.

Theorem 1. LetA € C**" be H-self-adjoint. Then there exists a nonsingular matrix
P € C™" such that

PlAP=A16---®A;, and P'HP=Hi & - & H, (2.1)

whereA ;, H; are of the same size and each péir;, H;) has one and only one of
the following forms.

(1) Blocks associated with real eigenvalues:
Aj=Jp00) and Hj=eZp, (2.2)

whereig € R, p € N, ande € {1, —1}.
(2) Blocks associated with a pair of nonreal eigenvalues

o jp()\O) 0 _ 0 Zp
A= [ 0 7, o) and H = z, 0] (2.3)
whereig € C\Randp € N.
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Moreover, the form(P~1AP, P*HP) of (A, H) is uniquely determined up to a
permutation of blocksand is called the canonical form o\, H).

This result is well-known; complete proofs are given in [8,24], for example.

Indecomposability (see [9,14,15]) is a key concept in studiedHaformal
matrices. A matriAis calledindecomposable, or more preciselyindecomposable,
if there is no nontrivial subspac¥ € C" such thatV is H-nondegenerate and
invariant for bothA and A", Clearly, every matrix can be decomposed as a direct
sum of indecomposable matrices. Moreoveiis H-normal if and only if each of
its indecomposable constituent is normal with respect to the indefinite inner product
induced byH on the corresponding- and A*l-invariant subspace.

Next, we review a form of decomposition fét-normal matrices. This form is
closely related to the decompositionskdfnormal matrices that have been derived
and used in [9,14]. However, the form presented here will not only give information
on X, but also on the self-adjoint and skewadjoint part&.dbee [21] for a full proof.

Theorem 2. LetX € C"*" be H-normal. Furthermordet X = A + S, whereA =
Ay is H-self-adjoint andS = Sy is H-skewadjoint. Then there exists a honsingular
matrix P € C**" such that

PIXP=X1®---® Xy, PlAP=A18--- & Ay, (2.4)
P*HP =H1 & --- @ Hy, PISP=51®---® S, '
where,for each j,the matricesX ;, A;, S; and H; have the same size. Furthermpre
eachX; is indecomposable and the corresponding blogksnd A; have at most
two distinct eigenvalues each. Moreoyttre following conditions are satisfied.

(1) f o(A)) = {ro} ando (S;) = {no}, thenkg is real, ug is purely imaginary and

o(X;) = {ro+ o},
(2) If A; or S; has two distinct eigenvalugthen

A 0 o Si1 0 |10 I
Af—[o Ajfl]’ Sf—[o —sul = o)

Furthermore we haver (A1) = {;} ando (S;1) = {u,} for somexr;, u; € C
ando(Xj) = {)\.j —‘,—[,Lj,)\.j —ﬁj}, Wherekj + uj *+ )‘j —ﬁj.

An H-normal matrixX is calledblock-Toeplitaf every indecomposable block &f
has either only one Jordan block or two Jordan blocks with distinct eigenvalues. The
concept of block-ToeplitH-normal matrices was introduced and studied in [10,11].
The reason for the notion “block-Toeplitz-normal” is obvious by the following
theorem (proved in [10]).
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Theorem 3. Let X € C"*". Then X is block-Toeplitz H-normal if and only if there
exists a nonsingular matriR € C**”" such that

PXP=X1®---®X; and P'HP=H1&®--- & H; (2.5)

where,for each j,the matricesX ; and H; have the same size ;X5 indecomposable

and the pair(X;, H;) has one and only one of the following forms.

(1) H; =¢Z,, wheres € {1,—-1} and X; is an upper triangular Toeplitz matrix
with nonzero superdiagonal elemene.,

X0 X1 e xp71
;=% (2.6)
. . ... _xl
0 0 X0
wherexy #£ 0.
(2) X; and H; have the form
_|Xn O _19 2z
X; = [ 0 X‘,2:| and H; = [Z,, 0 ] (2.7)

whereX ;; and X ;> are upper triangular Toeplitz matrices with nonzero super-
diagonal elements and the spectraXf; and X ;, are disjoint.

Corollary 4. Every matrix that is H-self-adjointor H-skewadjoint,or H-unitary,
is block-Toeplitz.

3. Normality in spaceswith indefinite inner products

In the following we discuss which of the conditions listed in [5,12] are equivalent
to H-normality and which are equivalent té-normality under some extra hypo-
thesis. For the sake of the reader’s direct reference, we assign to these conditions the
same numbers as in the lists of [5,12]. Clearly, we have to adapt some terms in the
conditions to the case of indefinite inner product, i.e., we have to replace terms like
“conjugate transpose”, “Hermitian”, etc. by their corresponding terms in indefinite
inner products, i.e., by “adjoint” M-self-adjoint”, etc. Also, several conditions listed
in [5,12] require that some Hermitian, skew-Hermitian, or unitary matrices have
distinct eigenvalues. This requirement will be replaced by the requirement that the
correspondingfi-self-adjointH-skewadjoint, oH-unitary matrix are nonderogatory.

In the case of definite inner products, the restrictions “to have distinct eigenval-

ues” and “to be nonderogatory” are the same for these sets of matrices, but in the
case of indefinite inner products, they are not, siHegelf-adjoint,H-skewadjoint,

and H-unitary matrices need not be diagonalizable. Therefore, we prefer the term

“nonderogatory” instead of “having distinct eigenvalues”.
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Let us return to the lists in [5,12]. Conditions (1)—(89) listed there can be supple-
mented by the following conditions:

(90) X is H-normal. (The overbar denotes complex conjugation of every entry.)
(91) There exists a polynomigl and anH-self-adjoint matrixA such thatX =

p(A).
(92) There exists a polynomipland arH-skewadjoint matrix6such thaX = p(S).
Inthe cased = I, each of these conditions is easily seen to be equivalent to normal-

ity.
In the following sections, we discuss conditions (1)—(92) and their relations to
H-normal matrices. First, let us introduce the following notation.

o (H):={M € C**" | M is H-self-adjoint,
S (H):={M € C**" | M is H-skewadjoint},
WUH):={M € C"" | M is H-unitary},

N (H):={M € C"™" | M is H-normal}

Furthermore, we denote by (H) the set of allH-self-adjoint,H-skewadjoint, or
H-unitary matrices, i.e.,

J(H):=A4H)US(H)UUH).
The matrices in the se¥ (H) will be calledtrivially H-normal. We classify con-
ditions (1)—(92) (except those noted in (a)—(c) below) into the following classes of
conditions depending on their relation to the seHefiormal matrices.

3.1. Conditions that are not true for all triviallj-normal matrices, i.e., conditions
that define a se# of matrices such that
TH) L M.

3.2. Conditions that are true for all trivialld-normal matrices, and that are suffi-
cient, but not necessary fét-normality, i.e., conditions that define a sét of
matrices such that
T (H) S MSN (H).

3.3. Conditions that are equivalentkbnormality, i.e., conditions that define a set
4/ of matrices such that
M = N (H).

3.4. Conditions that are necessary, but not sufficientiffoiormality, i.e., conditions
that define a se# of matrices such that
N ()G .

3.5. Conditions that are true for df-self-adjoint,H-skewadjoint, andH-unitary

matrices, but that are neither sufficient nor necessaryHforormality, i.e.,
conditions that define a se¥ of matrices such that

TH)YC ML NH) and N(H) L M.
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In the present paper, we do not consider the following conditions among (1)—(92):

(a) Conditions that involve the positive semidefinite square root’of, or polar
decompositions: (71), (84)—(86), and (37)—(48).

(b) Conditions that involve a singular value decomposition: (58), (59), and (82).

(c) Conditions that involve the Moore—Penrose inverse: (60) and (61).

In connection with (b) and (c) above note that a generalization of the singular value
decomposition in spaces with indefinite inner products was obtained in [4]. However,
a decompositiork = U DV, where UandV areH-unitary andD is diagonal, need

not exist, even not in the case whrs H-self-adjoint. Furthermore, although an
analogue of the Moore—Penrose inverse could be defined via the generalization of
the singular value decomposition, at present there is no theory of such indefinite
generalizations of Moore—Penrose inverses, and in particular, it is not clear if they
always exist. As for conditions (a), note that not for evéne C**" there exists

an H-self-adjointA such thatx*1 X = A2 (compare Theorems 2.1 and 3.1 in [23],

for example; this and other related properties are sorted out in [23] regarding ro-
bustness). Furthermore, it is an open problem whether é¥ergrmal matrixX has
anH-polar decompositioni.e., a factorization of the forlx = U A, whereA is H-
self-adjoint andJ is H-unitary. A partial answer to the question whether having an
H-polar decomposition with commuting factoksandU (assuming such decompos-
ition exists to start with) is equivalent td-normality can be found in [21]. There,

it was shown that every nonsinguldrnormal matrix has ahl-polar decomposition

with commuting factors. On the other hand, examples of sindgtHaormal matrices
were presented in [21] that admit B#apolar decomposition but do not alldd+polar
decompositions with commuting factors.

3.1. Conditions that are not true for trivially H-normal matrices

Some of the conditions of the lists in [5,12] are obviously not satisfiedHfor
normal matrices. As a matter of fact, they already fail for the more restrictive class
7 (H). These conditions are out of interest if one tries to find classésmbrmal
matrices that contain all important special cases. Conditions of this type include
those that state explicitly or implicitly thatis diagonalizable: (11), (13)—(16), (72),
(83), and (87); and those thHtself-adjoint,H-skewadjoint, oiH-unitary matrices
have only real eigenvalues, purely imaginary eigenvalues, or eigenvalues of modulus
one, respectively: (35) and (36).

TheH-numerical rangeof a matrixX € C"*" is defined by

Wx(X) = {[Xy,y]: y € C" and[y, y] = 1}.

Here[x, y] = (Hx, y) is the indefinite inner product induced by Numerical ranges

in the context of indefinite inner products have been studied recently in [18-20]; in
particular, it is well known (see [2], for example), thiéty (X) is always convex.
However, Wy (X) may be unbounded, i.e., thé-numerical radius syjx| : z €
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Wg (X)} may be infinite. The indefinite inner product analogues of conditions (66)—
(70) that involve numerical ranges and numerical radii (in conditions (69) and (70)
x*Ax should be replaced by x, x]) all fail for an H-self-adjoint matrix whoséi-
numerical radius is infinite arnid-numerical range does not intersect eigenvalues, for
example,
i 0
X:[O _i}, H =27

Further conditions that are generally not true for the ctagé#f) are the following.

(8) For anyH-unitaryU for which

Bi11 B2
0 Bx»
with B11 square, the matriBi> = O.
(51) If 0, (X) = {r1, ..., Ay}, then there exist, az, b1, b2, c1, c2 € C with ¢ +
¢2 # 0 such that
om (a1 X + a2 X 4 b1 X2 + by X2 4 1 XX + co X XT*T)
— —2 _—
={a1rj +azr; + bl)\i + bz)»j +(c1+crjdjlj=1,...,n}

(53) If 6 (X) = {Ad, ..., A}, then|a1]2 + - - - + |1,|2 = trace(X* X).

(54) If 0y (X) = {A1, ..., A}, then R€A1)2 + - - - + Re(},)? = tracg A%).

(55) If 0 (X) = (A1, ..., A}, then Ima)? + - - - + Im(r,)? = —traces2).

(56) If U is H-unitary and the eigenvalues &fare displayed on the diagonal of
U™ XU, thenU™ XU is diagonal.

(57) If o (X) = (A1, ..., A}, thenay, (XHIX) = {[a1)?, ..., 2,12

(64) | Xv| = | X"y forallv e C".

(81) The functionf, (1) = log|le'Xv| is convex orR for any vector € C"*",

(88) If € (X) is thekth compound (the matrix whose entries &are k minors ofX),
then

€N =0 (6r(X)), k=12,...,
whereg(M) is the spectral radius of a matrif € C**".

vrlxu = [

Proofsand comments. Conditions (8) and (56) fail for thél-self-adjoint matrix
S p(A), where re R, H = Z,, and U= I,,. Next, conside#d = Z and theH-self-
adjoint matrix
(14 0 . v _ v2_ |2 0
X_|:0 1—i]’ e, XUXx=x"=|17 5l

Then (53)—(55) and (57) fail. Condition (64) is true fdrself-adjoint ancdH-skew-
adjoint matrices, but fails foH-unitary matrices. For example, considér= Z»

and
1 i 1 0 [] _1 2
U——|:0 lj|, v——|:i:|, Uv——liii|, U v =U v——|:i].
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Since each of (81) and (88) is equivalent to normality, Henormality with H = 1,
each is violated for anii-self-adjoint matrixX which is notl-normal, for example,
X = #200),H = Z>.

Finally, we verify that (51) fails foH-self-adjoint matrices. More precisely, we
will show that there exist &« 4 H-self-adjoint matriceX with distinct nonreal ei-
genvaluegi, A2 = A1, A3, A4 = A3} such that the identity

Om <(a1 +a)X+b1+by+c1+ cz)XZ)
= {ash; +aghj + b2 + boks + (c1+ chjh; | j = 1,2,3.4),  (3.0)

whereas, a2, b1, b2, c1, c2 € C, may hold true only when; + ¢2 = 0. To see this,
let .y =a+ib, Ag3=c+id, A2 =A1, Aga= A3, a,b,c,d € R, bd #+ 0, be two
pairs of complex conjugate numbers. For every permutatiof the set{1, 2, 3, 4}
consider the 4 5 matrixK = K(a, b, ¢, d; =) whosejth row is
[M — ha(ys hj = Ay, A5 = A2 A - P 5 — l)\nmlz] ;
j=12734.
Then the right most column ok (a, b, ¢, d; ) is linearly independent of the four
other columns oK (a, b, ¢, d; 7). Indeed, upon adding the first, second, and third
rows to the fourth row oK (a, b, ¢, d; 7), a simple computation shows that the new
fourth row has the forni0 0 0 0 — 442 — 4d?].
Let X be a 4x 4 H-self-adjoint matrix having the eigenvalukesg, A2, A3, and X.

If (3.1) were true for somey, az, b1, bz, c1, c2 € C with ¢1 + ¢ # 0, then for some
permutationr of the{1, 2, 3, 4} we would have

ai

az

K(a,b,c,d; ) b1 =0.
by
c1+c2

This contradicts the linear independence of the right most colunknef b, c, d; )
of the four other columns &K (a, b, ¢, d; 7). O

3.2. Conditions that are true for all trivially H-normal matrices, and that are
sufficient, but not necessary for H-normality

(6) XB = BX impliesX*1B = Bx!*1 for everyB.
(17) There exists a polynomiglsuch thatx*] = p(X).
(18) X commutes with some nonderogatatynormal matrix.
(19) X commutes with some nonderogatatyself-adjoint matrix.
(65) X!*1 = Uy X for someH-unitaryU.
(91) There exists a polynomigl and anH-self-adjoint matrixA such thatX =
p(A).
(92) There exists a polynomipland arH-skewadjoint matriXSsuch thatX = p(S).
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Proofs and comments. Observe that (6= (17); this follows from a general res-

ult that the algebra generated by the identity and one linear transformation
on a finite dimensional vector space coincides with its double commutant (see [17,
p. 113].). We shall see later (Theorem 11) that

(18) <= (19) <= (9 <= (92).

Thus, it is sufficient to consider conditions (6), (65), and (91).
Condition (6) is clear foX € .7 (H). H-normality follows from (6) withB = X.
Condition (65) is clearly true for matrices in the clag$H ). Moreover, it follows
from [4, Lemma 4.1] thak*] = U X for someH-unitaryU if and only if

xMx = xx" and KexX) = Ker(x"). (3.2)

Thus, (65) impliedH-normality.

Condition (91) was proved for block-Toeplitd-normal matrices in [10]. It is
clear that (91) implie#i-normality.

On the other hand, consider the example

00 0 I 01 1 0
01 0 0 000 0
H=10 0 1 o' ¥=lo 0 0o 32|’
100 0 000 0
(3.3)
0 0 V2 0O
00 0 1
[x] —
X o0 o0 1|’
00 0 0

Then X is H-normal and indecomposable (see [9]). However, (6) is not satisfied,
because setting

we obtain thaiX andB commute, butx*! andB do not. Moreover, (65) fails, since

Ker(X) #+ Ker(x"*l) (see (3.2)). Condition (91) fails as well, since evéhself-

adjoint matrixA has to be decomposable fargiven by (3.3), as it is easily seen

from Theorem 1. But then, alsa(A) would be decomposable for any polynonpal
O

3.3. Conditions that are equivalent to H-normality
(0) Xis H-normal.

(1) p(X) is H-normal for every polynomigp.
(2) X~ 1is H-normal (as long aX is nonsingular).
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(3) x~1x™ is H-unitary (as long aX is nonsingular).

@) X = xHx(x~H (as long ax is nonsingular).

(5) X commutes withx ~1 X! (as long a is nonsingular).

(7) U™ XU is H-normal for every (or for somey-unitary U.
(21) AxSy = SxAy.
(22) XAy = AxX.
(23) XAx + Ax XU = 24% (= AxX + X" Ay).
(24) XSx = Sx X.
(25) XSy — Sx X1 =282 (= Sx X — x¥lsy).
(26) Ay*X + XM ALt = 21 (= XAyt + A x!¥)) (as long ast x is nonsingular).
(27) Sy X — xspt = 21 (= x5 — 53 X)) (as long asS is nonsingular).
(62) [Xv, Xw] = [Xv, XxEy] forall v, w € C".
(63) [Xv, Xv] = [X¥y, XUly] for all v € C.
(75) A% — %2 = XX (or X x1*).
(79) exp(#, X) is H-normal for a sequenag,,) #+ 0, converging to zero.
(89) The operator/y =1, ® X + X ® I, on c"**"* is H @ H-normal.
(90) X is H-normal.

Note that.#x is a description of the Lyapunov operatéty : C"*" — C"*",

Y > (XY + Y X).

Proofsand comments. Most of the proofs are straightforward or proceed exactly
as in [5,12]. For example, the proof of the sufficiency of condition (79) uses the
equality

1
X = Iim — (exp(t, X) — I,) .

tm—0 by

Condition (89), however, has to be shown in a different way. Therefore, let us com-
pute the adjoint of# x. We use the abbreviatioi = H ® H.

MV —HQH) Y1, @ X +X ® 1,)*(H® H)
—1,® (H*X*H)+H XH) oI,
=1, @ X" . XM g

From this we obtain

M =1, @ (X X) + X @ XM . X @ x 4 XX © 1,
My =1, @ (XX + X @ X 4 X7 @ x + XXMM @ 1,

Thus, conditions (0) and (90) imply th#¢ ® H-normality of.# x. On the other hand,
if #/xis H® H-normal, then
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=1,3B+B®I,,

X)® I,

whereB = X x*l# — xI*l# X Comparing the left upper x n blocks in this equal-
ity, we find thatB = [bjk] k= = —b111,. The latter equality is true if and only if
B =irl,, wherer € R. Note thatB is H-self-adjoint as a difference of twid- self-
adjoints and that the only eigenvalueBfs ir. This is possible if and only if =

(cf. Theorem 1). This implies thd-normality of X. O

3.4. Conditions that are necessary, but not sufficient for H-normality

We start withH-semidefinite matrices. One can generalize the notion of positive
semidefinite matrices to indefinite inner products in at least three ways: An
H-self-adjoint matrixB is calledH-nonnegativef (1) HB is positive semidefinite; or
if (2) there exists am-self-adjoint matrixC such thatB = C2; or if (3) the num-
ber of positive (resp. negative) eigenvaluedi®¥, counted with multiplicities, does
not exceed the number of positive (resp. negative) eigenvalukls afso counted
with multiplicities. All three ways are equivalent i = 7, and are mutually not
equivalent ifH is indefinite (the nonequivalence is easily seen by examples%o? 2
matrices, takingd = Z»). Accordingly, we say that ahl-self-adjoint matrixB is
H-nonnegativg, if it satisfies the definition (i)j = 1, 2, 3. The H-nonnegativg
matrices are calletl-consistent in [4].

Conditions that are necessary, but not sufficientHfarormality are:

(20) x*1x — X x!*! is H-nonnegativg .
(28) Every eigenvector ol x is also an eigenvector &y (as long asdy is non-

derogatory).

(29) Every eigenvector afy is also an eigenvector ofx (as long asSy is non-
derogatory).

(30) Every eigenvector ofiy is also an eigenvector of (as long asAyx is non-
derogatory).

(32) Every eigenvector iy is also an eigenvector of(as long asSy is nonderog-
atory).

(34) Ifo,,(Ax) = {1, ..., @y} ando, (Sx) = {B1, . .., B}, then there exists a per-
mutationp of {1, ..., n} such that

om(X) = {aj +,39(j) |j= 1,...,n}.

(49) If ,,(X) = {1, ..., Ay}, then there exists a permutatiprof {1, ..., n} such
that

Om (X[*]X> = {)\jxg(j) |] = 1, ,I’l}

(50) If 0,y (X) = {A1,..., Ay}, then there exist a permutatienof {1, ..., n} and
a, b € C\{0} such that
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ow (X +bXM) = {ak; + bioiy | j=1.....n)

(52) If 0,,(X) = {A1, ..., An}, then there existy = a1 € C, bp = by € C, c1, 2
real, such thats, ¢ are not both zero and the equation given in (51) holds.

(73) X commutes withx X — x[x.

(74) X commutes withx*1 X (or with X x[*1),

(76) trace(X1*1X?) = trace((X*1X)?).

(77) trace(¥*1x7) = trace((X*1X)?) for some positive integes > 2.

(78) tracg(X"1*1xP)7) = trace((X*1X)??) for some positive integerp > 2,
g =1

(80) trace(&"'eX) = traceeX"+X).

Proofsand comments. To see that (20, (28)—(30), (32), and (52) are not sulffi-
cient forH-normality, consider the following example.

0 1 0
X=|0 0 3| and H=Zs. (3.4)
0O 0 O

We then obtain
0 2 0 0 -1 O 0 3 0O
Ax=1]0 0 2|, Sx=|o o 1|. x¥=|0o o 1|.
0 00 0 0 O 0 0O

Note thatAy and Sy do not commute, hence& is not H-normal. ButX satisfies
(28)—(30), (32), and (52) for adl1, b1, c1, c2. Since

0 0 8§ o v8 071° [0 0 8
x¥Hx —xx® =10 o o, [0 o 8| =|0 0 of,
0 0 0 0O 0 0 0 0 0

X satisfies also (2@), fori = 1,2, 3.
ConsiderH = Z4 and the matrixX = A + S defined by

[1 1 0 O i 0 0 O

_lo 1 0 o0 1o i i o

A= 0 0 1 1 and S = o 0 i ol (3.5)
0 0 0 1 0 0 0 i

Note thatA is H-self-adjoint andS is H-skewadjoint, i.e. A = Ay and S = Sy.
However,A andSdo not commute. Hence the matrices

[1+i 1 0 0 |

vo| 0 1¥ioi 0
o o0 1+i 1 |’
0 0 0 1+i]
(3.6)
1-i 1 0 0
(%] _ 0 1—i —i 0
X =10 "o 1-i 1
0O 0 0 1-i
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are notH-normal. But X satisfies conditions (34), (49) (both wigh= identity), (50)
(for all a, b and withp = identity), (76)—(78), and (80). For the proof of (80), note
that alsoeX'™, eX, andeX'"'*+X are upper triangular. A counterexample for (73) and
(74) is given by

01 1 0 01 -1 0
oo o0 -1 B w00 o0 1
X=lo0 0 0o 1|0 =% X"=l0 0o o 1|’
000 0 00 0 0

We then obtain
00 0 7 00 0 -2
00 0 0 000 O
[*] _ [*ly _—

XX"=19 0 o0 of ad X"X=15 ¢ o ol

00 0 0 000 0

i.e.,Xis notH-normal. However, (73) and (74) are satisfied.

On the other hand note that (29) (28)—(30), (32), (34), (49), (50), (52), (73),
(74), and (76)—(78) are true fét-normal matrices. This is obvious for (20) (73),
(74), (76)—(78), and (80); and this follows from Theorem 2 for (34). Moreover, if
X is H-normal, then the fact thaX and X*J commute implies that there exists
a nonsingular matrix? € C"*" such thatP~1x P and P~1x*! P are both upper
triangular (see Section 9.2 in [7], for example). From this, we can see that the
conditions (49) and (50) are satisfied. Furthermore, condition (52) is satisfied with
a1 = ap = b1 = bp = 0and q = —c». Itremains to show (28)—(30) and (32). There-
fore, note thaH-normality of X implies thatAx and Sx commute. Let us assume
that Ay is nonderogatory. It + 0 is such thatA xv = Av, then

Ax(Sxv) = Sx(Axv) = ASxv.

SinceAy is nonderogatory§yx v must be a multiple ob, i.e., v is an eigenvector of
Sx. This implies (28); and analogously we show that (29), (30), and (32) hold true
for H-normal matrices. O

3.5. Conditions that are true for all trivially H-normal matrices, but that are neither
sufficient nor necessary for H-normality

(9) If w~ C C" is an invariant subspace i then so is 7]
(10) If v is an eigenvector oX, then ¥ is an invariant subspace fit.
(12) If v is an eigenvector oX, then vis an eigenvector ok 1.
(31) Every eigenvector of is also an eigenvector ofy.
(33) Every eigenvector of is also an eigenvector ¢fy.

Proofs and comments. Condition (9) holds forH-self-adjointsA: Let #~ be A-
invariant andv € %'+, i.e., v*Hw = 0 for all w € #". We have to show A&
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'+, This follows fromv*A*Hw = v*HAw = 0 for all w € #". The proof for
H-skewadjoint andH-unitary matrices proceeds analogously. Condition (9) implies
condition (10). Conditions (12), (31), and (33) are clearly true for all matrices in the
class7 (H). (Note that (12) implies (31) and (33), becausedaf = 3(X + X))
andSy = 3(X — x"*1).)

On the other hand consider example (3.4). There, (9), (10), (12), (31), and (33)
are satisfied, but the matrix is ndtnormal. (Observe that! = (Hv)*.)

Moreover, consider example (3.3). Then we obtain
0 1 1++2 0

szi 0 0 0 1
2|10 0 0 1+ 2|

0 0 0 0

0 1 1-42 0

szl 0 0 0 -1
210 o 0 vV2-1

0 0 0 0

Choosingy=[0 1 -1 qT, we see that (9), (10), (12), (31), and (33) fail

althoughX = Ax + Sy is H-normal.
Note that (31) and (33) fail already for block-Toeplifznormals. To demonstrate

that, consider

0 0 O 1 0 O
X=|0 0 0|, H=|(0 0 1f.
0 0 1 0 1 0

Then

0 0 0
Sx=10 -1/2 0 |,
0 0 1/2
and[1 1 O is an eigenvector of which is not an eigenvector ofx or of Sx. [

4. Proper subclasses of the class of H-normal matrices

In this section we focus on some proper subclassdd-nbrmal matrices that
contain allH-self-adjoint,H-skewadjoint, andH-unitary matrices. Besides the class
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of matrices defined by condition (65) (this class contains in particular all nonsingular
H-normal matrices and thus, from the viewpoint of classification, we have the same
problems as in the case of classifying ldHnormal matrices), these are the class of
matrices that we call polynomialli-normal matrices (see Section 4.1) and the class
of polynomials ofH-self-adjoint matrices (see Section 4.2).

4.1. Polynomially H-normal matrices

In this section, we focus on the equivalent conditions (6) and (17) of the list in
Section 3.2. AmatriXX € C"*" will be calledpolynomially H-normalf (17) (or (6))
is satisfied. It will turn out that every polynomially-normal matrix is block-Toeplitz
H-normal. Therefore, we will need the following lemma.

Lemmab. Let p(r) = ait + --- + it € C[t] be a polynomial such that; + 0.
Furthermore letm > k and H € C"** be such thap (#,,(0))* H = Hp (#;(0)).
Then

k 0 0 hm—iky1k
H= m—k [Q} and H=| ¢ K : ,
k H Bt oo ha

whereh,,; j+1 = (a1/a))hm—j+1,;-

Proof. Let H = (h;;). Then we have the following matrix equation:

0
. hiy - hi
aj )
:* * hmi o0 hmk
ay, ai O
al ... ak
h11 hwe L :
hmi o0 hmk : oA
0O ..« ... 0

Comparing the first columns of each side and notingdhat 0, we find thati11 =
-++=hpy_1,1= 0. Then, comparing the second columns, we find that= - - - =
hm—2,2 = 0andh,,_12 = (a1/aj)hn,1. Repeating this procedure, we finally see that
H has the structure stated in the lemmad.]

Theorem 6. LetX € C"*" be polynomially H-normal. Then X is block-Toeplitz H-
normal.
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Proof. Let XI*I = p(X) for a polynomialp. If we denote theH-self-adjoint and
H-skewadjoint part oK by A andS, respectively, then we obtain in particular

1 1
A=S(X+ X¥) = paX) and S= S(X = XMy = ps(x),

wherep, (1) = 3(t + p(1)) andps(1) = 3(t — p(1)).

If Q is nonsingular, then(Q-1xQ)*lorno = 9-1xu g = 0-1p(Xx)Q
= p(Q~1X Q). Therefore, we may assume thétandH are in the form (2.4) of
Theorem 2 and we may consider the blocks separately. There are two cases.

Casel. X has only one eigenvalu&/ithout loss of generality, we may assume that
the eigenvalue oX is zero, because X !*! is a polynomial inX, then clearlyy ! :=
Xt Aol is a polynomial inY := X — Aol for everyig € C. In particular, we may
assume that alshandShave only the eigenvalue zero. Now assume furthermore that
Xis in Jordan canonical form

X1 0

Xi—1
0 Xk
whereX; = --- = Xy_1 = #,,(0) are the Jordan blocks of maximal sizeand Xy
contains all the Jordan blocks of size smaller tharWWe then obtain
Hi1 -+ Hu

A=paX), S=psX), H=| o
ka . Hkk
Since X, A and S are upper triangular and nilpotent, we find that(t) = a1t +
oo+ ait! andpg(r) = sit + - - - + s;t!, i.e., the coefficients op4 and pg that cor-
respond tar® are both zero. Furthermore, we have by constructiop pfand pg
thatay # 0 or s1 # 0. Let us assume that # O (if s1 # 0, an analogous argument
applies). Now it follows from Lemma 5 that has a very special structure. In partic-
ular, the first row of the blockiy, is equal to zero. Sindd is nonsingular, it follows
that there exists at least opec {1, ..., k — 1} such thatH; , has a nonzero entry in
the first row. It follows from Lemma 5 that this is necessarily ¢hem)-element on
the main anti-diagonal off;, and furthermore that all the entries on the main anti-
diagonal are nonzero, i.eH;, is nonsingular. We will show now that it is possible
to decompos& andH. Therefore, we distinguish two cases.

Casel(a).At least one off1; and H,, is nonsingularSay, H11 is nonsingular.
Otherwise we may exchange the blocks, and Hy; by block row and column
permutations. Note that these permutations have no effeAtaonS. Setting

I —Hy‘'Hiz - —Hy‘Hu
1
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it follows that

Hi; O 1 pa(X1) An
P*HP = 2|, plap= 12
|: 0 H22:| 0 A22
_ X1) Sz
P 1SP — PS( 1 D )
|: 0 S22

Since P~1AP is P*H P-self-adjoint, we obtain thaH11A1> =0, i.e., A1o = 0.
Analogously, we find thafy> = 0.

Casel(b). If H1; andH ), are singular, then necessarily the entries on their main
anti-diagonals are zero. According to Lemmarh,, and pr have the following

form:
a m—1
0 (#)
Hlp= .
ai 0
(2) - :
B 0
aj *
0 (a_1> Z
* .
HY, = N
-1
ar\" *
(&) - .

for somez € C\{0}. This implies that the entries on the main anti-diagonaof +
pr are nonzero if and only if* + (al/aj)’”‘lz #+ 0. Analogously, the entries on
the main anti-diagonal o1, — Hy, are nonzero if and only if* & (al/ai‘)m_lz.
Let us consider two more subcases.

Subcasgbl) Assume that* + (al/af)’”‘lz #+ 0. Consider the 12 x 2m sub-
matrices ofH, A andSthat are defined by the blocks with indices 1 gndrhen,
setting

o= 501 ]

we obtain that
~ A1 Hip « [Hll Hlp}
H:=| > =0 0,
[pr Hpp Hi, Hpp
whereH1; = Hi1 + Hyp + Hj, + Hp,. From the discussion above, it is now clear

that the entries on the main anti-diagonaFhf; are nonzero, i.eHy1 is nonsingular.
TransformingH, A, and Sy a corresponding transformation that only affects the first
andpth block rows and block columns, we find in particular that this transformation
has no effect or\ or S, since X = X,,. Thus, we reduced the problem to Case 1(a).
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Subcas€b?) If z* + (al/aI)m_lz =0, thenz* # (al/af)m_lz. In this case, the
proof proceeds analogously to Subcase (b1) by taking

o= A Tiroa
B ﬁ I il
instead ofQ noting that
~ A Hip - |:H11 Hlp:| ~
H:=| - N =0 0,
|:pr Hpy)p pr Hpp
Whereﬁn = Hy1— i(Hlp — pr) + Hyp.

Altogether, we find that in both cases 1(a) and (b) there exists a honsingular matrix
R, such that

0 0 =

for someH; € C™*™. Clearly X, is block-ToeplitzH1-normal, since it has only one
Jordan block. Thus, the rest of Case (1) follows by an induction argument.

Case2. X has two distinct eigenvalugsanda.. According to Theorem 2, we may
assume that

X:[Xll 0] and H=|:0 I:|,

R*HR = |:Hl X1 Oi|

ﬂ and RIXR=R YA+ SR = [

0 X292 I O

where X1; has the eigenvalug and X»» has the eigenvaluk. Moreover, we may
assume without loss of generality théts indecomposable.

SinceX*! = p(X), we have in particular thaX}, = p(X11). Assume thaf11
is in Jordan canonical form. Then it is clear tl&t, has a block diagonal structure
that corresponds to that af;1. Therefore, by row and column permutations, we can
decompos& andH into corresponding block diagonal forms

X=X1®---®&Xy and H=H1® ---® H;
such that

S pi (W) 0 o I,
X; = ’ * d H: = Pj|.
/ { p(fp,w)} e [Ip,- 0]

SinceX is indecomposable, we must have- 1, i.e.,Xis block-ToeplitzZH-normal.
(I

The following example shows that not every block-Toeplitz H-normal matrix is
polynomiallyH-normal.

Example 7. Consider the block Toeplitd-normal matrix
0 1 0 O

oo o0 o0 [z 0
X=19 0 o | 2a H—[o zz]'
000 0
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This implies
0 1 0 O
0 0 0 O
] _ 2 _
X" = 00 0 —i and X< =0.
0 0 0 O

If p(t) = po+ pit +---+ put™ is any polynomial, thew(X) = pol + p1X. But
obviously we havex*! £ p(X). Thus,X is not polynomiallyH-normal.

4.2. Matrices that are polynomials in H-self-adjoint matrices

In this section we focus on conditions (18), (19), (91), and (92) of Section 3.2. It
is our goal to show that all these conditions are equivalent and to present a “canonical
form” for these matrices. This requires some preparations.

Lemma8. LetX = Zk " xk/n(O)k, wherex,, # 0. Then X has an mtioot of the
form

n—1
R=) nfua0F ri#0.

k=1
If xn, ..., x,—1 are real andx,, > 0for m eventhen R can be chosen to be real.
Proof. Write

n—1
X=(nn@")T+0), 0= > x, xsn0",
k=m+1
and observe that + Q has armth root

(k)
I+t = I+Zf © ot

wheref(r) = (1+ t)l/’”. Now the lemma is obvious. O

Lemma9. Letn > m € N, and

n—1 n—1
B=2xl+ Y b (J,O0)° and C=puli+ Y (.0,
k=m k=m
wherei, u, by, cx € Cfork =m, ..., n — 1andb,, +# 0. Then there exists a nonsin-
gular matrix P € C**" such that
n—1
PTBP =Ly +(/4(0)" and PTICP=uly+ ) 1(/2(0)"
k=m
forsomey, € C, k=m,...,n — 1. Moreover,f by € Rfork =m,...,n—1,and

b, > 0if mis eventhen P can be chosen such that in additibhiz,, P = Z,,.
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Proof. Without loss of generality, we may assume= u = 0 (otherwise we sub-
tract the diagonals frorB andC). Then it follows from Lemma 8 thd& has amrmth
root R of the form

n—1
R=Y"r(f,00)",

k=1
wherery, € C for k=1,...,n—1 and n # 0. Hence, there exists a nonsingular
matrix P € C"*" such that

P~IRP = 4,(0).

This implies in particular thaP ~1B P = ( #,,(0))". On the other hand, we note that
C commutes with#, (0) and therefore, it also commutes wih But thenP~1C P
commutes withP 1RP = ¢#,(0) and since rank(CX n — m, we obtain that

n—1
PTICP =) 1 (7,000
k=m
for somer, € C,k =m,...,n — 1. Moreover, ifby e Rfork =m,...,n—1, and
b, > 0 (if mis even), therr, ..., r,_1 can be chosen real. ThuB,is Z,-self-

adjoint and by Theorem 1 the matrix can be chosen so th&*Z, P = Z, and
P~IRP = 7,(0). O

Lemma10. LetX e C"*" commute with the nonderogatory H-normal matrix
C™". Then there exists a nonsingular matixe C"*" such that

PIXP=X1®0---®X;y and P*HP=H,® - - @ H; (4.2)

where,for each j,the matricesX ; and H; have the same size and the pé¥;, H;)
has one and only one of the following forms:

(1) H; =¢Z,, wheree € {1, -1} and X is an upper triangular Toeplitz matrix.
(2) X; and H; have the form

_|Xi O _19 Z
Xj_[o ij} and Hj_[zp 0], (4.3)

whereX ;1 and X ;, are upper triangular Toeplitz matrices.
In particular, X is H-normal.

Proof. First, we note that a matri§ € C"*™ that commutes with an upper trian-
gular Toeplitz matrixi’ € C™*™ with nonzero superdiagonal entry is necessarily an
upper triangular Toeplitz matrix. To see this, Tehave the eigenvalue zero (other-
wise subtract the diagonal froff), and use the facts thatis similar to_¢,, (0), and
that every matrix that commutes wigh,, (0) is in fact a polynomial of#,, (0).
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Next, we note thaY is necessarily block Toeplitd-normal, forY is nonderog-
atory. Hence, we may assume thais block diagonal with diagonal blocks of the
form (2.6) or (2.7). SinceY is nonderogatory an commutes withy, it follows
thatX has a corresponding block diagonal structure and, therefore, we may consider
the blocks separately. First, let us assume that C"*" is of the form (2.6) and
H = +Z,. Then we have shown that is an upper triangular Toeplitz matrix. If
Y € C"" is of the form (2.7), then the fact thatis nonderogatory implies that
has a corresponding block diagonal structure, i.e., we have

Y 0 |0 z [ X1 0
Y_|:O Y22i|’ H_|:Z Oi|’ X_|:0 Xzz]’

whereY11 andY2; are upper triangular Toeplitz matrices with nonzero superdiagonal
element andXy;, commutes withYy, for k = 1, 2. This implies that bottk1; and

X2 are upper triangular Toeplitz matrices. In both casesHh®rmality of X is
clear. O

We note thatX in Lemma 10 is not necessarily block-Toepliznormal, since
the superdiagonal elements of the Toeplitz matrices in (4.2) may be zero.

Theorem 11. Let X € C"*" and letAx and Sx denote the H-self-adjoint and H-
skewadjoint parts of Xrespectively. Then the following conditions are equivalent.
(i) X commutes with some nonderogatory H-normal matrix.
(i) X commutes with some nonderogatory H-self-adjoint matrix.
(iii) There exists a polynomial p and an H-self-adjoint matrix A such fhat

p(A).

(iv) There exists a polynomial p and an H-skewadjoint matrix S such Xhat
p(9).

(v) There exists a nonsingular matrix € C"*" such that
PIXP=X1®---®Xy, P lAxP=410 A (4.4)
P*HP =H1&--- & Hy, PISxP=S1®---® S, ‘

where, for each j, the matricesX;, A;, S;, and H; have the same size and
satisfy one and only one of the following conditions.

1. We have
n—1 .
Aj= iy +8(F,0)" . S =indy+ Y s (£,0)"
k=m
4.5
EQ::sZp, ( )
wherem, p e N withm <n, A, u eR, sy e Rfork=m,...,n—1, and
S, =+1.
2. We have

n—1

Aj=rp+ Y a (£,0), S =iul, +i8 (£,0)"
k=m+1



C. Mehl, L. Rodman / Linear Algebra and its Applications 336 (2001) 71-98 93

Hj = SZP, (46)
wherem, p € Nwithm <n, A, u € R,a; € Rfork=m+1,...,n—1,and
5,6 ==+1.

3. We have 0 0
_|An S

w=[8 ] =8 )

0 ' ’ 4.7

Hj = [ uan

I, 0
wherep e N, n >m e N, A, u € Cwith A + u # A* — u*, and either
n—1
k
Ajp =M, +(7,0)" and Sjp=pl,+ Y s (7,(0) (4.8)
k=m

forsomes, € C,k=m,...,n — 1, orelse
1

Ap =+ Y a(7,0)°

k=m+1
Sjp=nlp +i(f,(0)"
forsomeq, e C,k=m+1,...,n— 1.

(4.9)

Proof. (i) = (ii): By Lemma 10, we may assume th&andH are in the form (4.2),
ie.,

X411 0 Xr1 0
X=X X gL
16 @ q@|: 0 X, l,2i|® @I: 0 X,»

} (4.10)
H =8lZp1€B"‘®8kqu @Zqu+1@"‘®ZZp,’
where all blocksX ; for j =1,...,¢ and all blocksX ;1, Xjofor j =q¢ +1,...,r

are upper triangular Toeplitz matrices. But thErcommutes with thél-self-adjoint
matrix

fp ()" +l) 0 :|
2 e A q+1"q _
fpl( 1) ©® &) qu( q) (&) |: 0 qu+l()\q+l)
I o (Ar) 0 }
DD y =
[ 0 I pe ()
whereiy, ..., A, € R. Clearly, the parameteis, ..., A, can be chosen so that this

H-self-adjoint matrix is nonderogatory.

(ii) = (iii): Let X commute with the nonderogatohself-adjoint matrixA and
assume thaA is in Jordan canonical ford = ¢, (A1) @ --- & 7, (), Where
A1, ..., A, are pairwise distinct. (Note that we do not claim thkiatan be reduced
to a corresponding block diagonal form.) Silceommutes withA, it has a corres-
ponding block diagonal forrX = X1 & --- @ X,, where X; is an upper triangular
Toeplitz matrix,j = 1, ..., r. There exist polynomialp; such that

pj(fpj()\j)):Xj and pj(fpl()»l))zo forl # j.
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(This follows from [16, Theorem 6.1.9(b)].) The(y) := Z;‘:l p;j(t) satisfies
p(A) = X.

(i) and (iv) are obviously equivalenp(A) = p(iA), wherep(r) = p(—it).

(iii) = (v): Assume that (iii) holds for somHl-self-adjoint matrixA. Then we
may assume thatA, H) is in the canonical form (2.1) and we may consider the
blocks separately. We will distinguish two cases.

Case(a). Assume tha#d = ¢, (x) andH = ¢Z, for somea € R ande = +1.
Then X is an upper triangular Toeplitz matrix amtly and Sy have the following
forms:

n—1 n—1
Ax =My + Y b (7,00 and Sy =iul,+ Y ick (Fa(0)F,
k=1 k=1
wherer, u e R, by e R, ¢y e R, fork=1,...,n— 1. If Ax andSx are diagonal,

then there is nothing to prove. Hence,det m € N such thab? + ¢5 = 0 for j <
m andb,%, + c,zn #+ 0. We assume without loss of generality that+ 0 and we show
that in this case the form (4.5) can be obtained. (Otherwise, we have 0 and
we may consideiX to show that the form (4.6) can be obtained.yJf > 0, then it
follows from Lemma 9 that there exists a nonsingular mafrix C**” such that

n—1
P AXP =MDy + (£, (O)", P7'SxP =iul,+ ) sk (£, (0)
k=m
P*HP =H,
for somes; € C. SinceSy is still H-skewadjoint, we have, € Rfork =m, ..., n —

1. On the other hand, #,, < 0, then the above argument can be applied 0 (or
—Ayx and—Syx, respectively), which implies the existence of a nonsingular matrix
P € C™" such that

P H—Ax)P = =)l + (7, (0)",
n—1
P Y =Sx)P = —ipl, + Y is (£, (0)F
k=m
andP*H P = H, or, equivalently,

n—1
P AXP =y — (£,0)",  PTESxP =iul, + Y sk (£,(0)",

k=m

P*HP =H,

for somes; € C ands; = —s;.
Case(b). Assume that
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Az_j”(a) 0 } and Hz[o 1”],

0 I p()* I, 0
wherep = n/2 and a«e C\R. Then X,Ax andSy have the form
[rn o0 _[n+r 0
X=lo Yz*]’ AX_[ 0 (Y1+Y2>*]

Sy — Y1— Yo 0
X~ o (Y2 — Y1)* |

whereY1 andY> are upper triangular Toeplitz matrices. Repeating the argument of
Case (a), we find by applying the first part of Lemma 9 that there exists a nonsingular
matrix Q such that

QM (N +Y)0=4j and QTN (Y1-¥2)Q=Sp,

whereA ;1 andS;; are as in (4.8) or (4.9), respectively. Then setting

_ |2 0
P‘[o (Q*rl]

yields the desired result.
(v) = (i): Assume thatP~1X P and P*H P are in the form (4.4). Let

Y=Y1® - -®Y,eC""
be partitioned conformably, such that edghhas the form

I p(a) if X; is of the form (4.5) or (4.6)

Yi=1[7»® o] L
[ 0 7o) if X; is of the form (4.7)

for somea, B,y € C. ThenP~1X P andY commute andy obviously is P*H P-
normal. Clearly, the parametersor 8, y of each blocky; can be chosen so thit
is nonderogatory. (]

If in each of the blocks (4.5), (4.6), and (4.7) the parametirequal to one, then
X'is block ToeplitzH-normal. Note that in this case the form (4.4) is equivalent to
the canonical form for block Toeplitd-normal operators given in [11].

In particular, if we consider a block of the form (4.5) for the case- 1, then this
representation is unique, because a similarity transformation that ldavasariant
will also leaves; invariant. However, this is not true if & m < n. (For invariants of
upper triangular Toeplitz matrices under simultaneous similarity, see [1].) Moreover,
form (4.5) does not always display the Jordan structueé,o&= A; + S;, and the di-
agonal blocks o ; need not be indecomposable. To see this, consider the following
example.
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Example12. Let p(r) = (8 +i)r2and

[0 1 0O 0 0 1
A=|0 0 1|, H=¢|0 1 0},
|0 0 O 1 0 O
wheres, e = 1. If X = p(A) = Ax + Sx, then
[0 0 &+i 0O 0 ¢ 0O 0 i
X=|0 0 0 [, Ax=|0 0 0|, Sx=|0 0 O].
|0 0 0 0O 0 O 0O 0 O

Thus,Ayx and Sy are already in the form (4.5). Note that the paramétisran in-
variant for the triple(Ax, Sy, H): Itis easy to check thatd x, H) has the canonical
form

3 0 1 O 5 0 8¢ O
A=]0 0 O and H=|6¢ O O
0O 0 O 0O 0 ¢

Obviously, for the four possible choices &fande, these forms are mutually non-
equivalent. However, it is clear thaf = Ax + Sy is H-decomposable. (This can

be seen by applying a row and column permutation.) Moreover, the form does not
display the Jordan structure %f

This example shows that it is of interest to further reduce the blocks of the form
(4.4) so that the resulting form is unique and displays the Jordan structX;eaofi
such that the diagonal blocks of the form are indecomposable. This open problem is
related to the open questions posed in [11].

5. Conclusions

We have investigated conditions (1)—(92) that are equivalgdtnormality in the
caseH = I. Moreover, we have discussed classeslaformal matrices defined by
some of these conditions. We have focussed on classes that chrseifradjoint,
H-skewadjoint, andH-unitary matrices and that are proper subclasses of the class
of H-normal matrices, in particular classes that are defined by one of the following
conditions listed in Section 3.2:

(17) There exists a polynomiglsuch thatx* = p(X).
(91) There exists a polynomigl and anH-self-adjoint matrixA such thatX =
p(A).

Denoting by (n), (b}, and () the properties that a matrix is-normal, is block Toep-
litz H-normal, and is triviallyH-normal, respectively, we have shown the following
implication scheme:

®) = (17) = (bt) = 91) = (n).
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So far, matrices with the property (bt) is the largest claskl-oformal matrices for
which a canonical form is known.

Open problem. Find a complete classification for matrices that satisfy (91).
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