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Abstract

We study classes of matrices defined by various normality properties with respect to an
indefinite (complex) inner product. The relationships between many such properties, all of
them equivalent to the normality in case of a definite inner product, are described. In particular,
a “canonical form” is developed for the class of matrices that are polynomials of a self-adjoint
matrix. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

An indefinite inner productin Cn (where byC we denote the field of complex
numbers) is a sesquilinear form[x, y], x, y ∈ Cn, defined by an equation
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[x, y] = 〈Hx, y〉, x, y ∈ Cn. (1.1)

Here 〈·, ·〉 is the standard Euclidean inner product inCn, and H is an invertible
Hermitian matrixH ∈ Cn×n. For a matrixX ∈ Cn×n, we denote byX[∗]H or, if
there is no risk of confusion, byX[∗], the adjoint ofX with respect toH, or, in
short,H-adjoint; that isX[∗] := H−1X∗H. Here and throughout the paper,X∗ stands
for the conjugate transpose of the matrixX. A matrix X ∈ Cn×n is calledH-self-
adjoint if X = X[∗], H-skewadjointif X = −X[∗], and H-unitaryif X is invertible
andX[∗] = X−1. A more general class ofH-normal matricesX is defined by the
property thatX commutes withX[∗].

In recent years, normal matrices with respect to an indefinite inner product have
been intensively studied, from various points of view: classification [9–11,13–15,22],
numerical ranges [18,20], and polar decompositions [3,21]. The general problem of
classification ofH-normal matrices has been posed in [8].

In case of the definite inner product (H= I , or, more generally,H is a definite
matrix), the property of being anH-normal matrix can be expressed in many equiv-
alent ways, see [5,12]. In contrast, in the indefinite case many of these ways are not
equivalent anymore, and define various classes of matrices. In this paper, we consider
in the context of indefinite inner products many statements that are equivalent to
normality in the case of definite inner products. In Section 3 we classify the classes
of matrices defined by these statements in relation to the classes ofH-self-adjoint,
H-skewadjoint,H-unitary, andH-normal matrices.

One important motivation for this classification comes from the problem of find-
ing a canonical form forH-normal matrices. ForH-self-adjoint andH-skewadjoint
matrices, there exist well-known canonical forms (see Theorem 1 in Section 2 for
theH-self-adjoint matrices, and [24], for example, for theH-skewadjoint matrices).
Canonical forms have also been developed forH-unitary matrices [8,10], and for
block-ToeplitzH-normal matrices that have been introduced and studied in [10,11].
On the other hand, in [9] it was shown that the problem of finding a canonical form
for generalH-normal matrices is at least as complicated as finding a canonical form
for a pair of commuting matrices under simultaneous similarity. Thus, the problem
seems to be unsolvable from a certain point of view, although in the particular cases
whenH has not more than two negative eigenvalues the problem was resolved com-
pletely [9,14,15]. Therefore, it makes sense to study the proper subclasses of the
class ofH-normal matrices that contain allH-self-adjoint,H-skewadjoint, andH-
unitary matrices. These classes are in particular the class of polynomiallyH-normal
matricesX, which are defined by the property thatX[∗] is a polynomial ofX, and
the class of polynomials ofH-self-adjoint (or ofH-skewadjoint) matrices. We focus
on these classes in Section 4, where we prove in particular that every polynomially
H-normal matrix is block-Toeplitz and give a canonical form for matrices that are
polynomials ofH-self-adjoints.

Throughout the paper,H denotes a Hermitiann × n nonsingular complex matrix
if it is not explicitly stated otherwise. Furthermore, we use the following notation:
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N = {1,2, . . .}, R is the field of real numbers,Ip is thep × p identity matrix.Jp(λ)

is thep × p upper triangular Jordan block with eigenvalueλ; Zp is thep × p matrix
with ones on the main anti-diagonal and zeros elsewhere, i.e.,

Zp =

0 1

q
1 0



p×p

.

For a givenX ∈ Cn×n we denote byAX andSX theH-self-adjoint andH-skewadjoint
parts ofX, respectively, i.e.,

AX = 1

2

(
X + X[∗]) and SX = 1

2

(
X − X[∗]) .

X1 ⊕ · · · ⊕ Xk stands for the block diagonal matrix with the diagonal blocksX1, . . . ,

Xk (in that order).
By σ(M), we denote the spectrum, i.e., the set of eigenvalues, of the matrixM. On

occasions, we would like to indicate not only the eigenvalues, but also their algebraic
multiplicities. For that purpose, for ann × n matrixM, we use the notation

σm(M) = {λ1, . . . , λn},
where the right-hand side is a multiset (i.e., repetitions of elements are allowed) of
eigenvalues ofM in which every eigenvalue is repeated according to its algebraic
multiplicity.

2. Preliminaries

In this section we will review several forms of decompositions forH-self-adjoint
andH-normal matrices. We start withH-self-adjoints.

Theorem 1. LetA ∈ Cn×n be H-self-adjoint. Then there exists a nonsingular matrix
P ∈ Cn×n such that

P−1AP = A1 ⊕ · · · ⊕ Ak and P ∗HP = H1 ⊕ · · · ⊕ Hk, (2.1)

whereAj ,Hj are of the same size and each pair(Aj ,Hj ) has one and only one of
the following forms.

(1) Blocks associated with real eigenvalues:
Aj = Jp(λ0) and Hj = εZp, (2.2)

whereλ0 ∈ R, p ∈ N, andε ∈ {1,−1}.
(2) Blocks associated with a pair of nonreal eigenvalues:

Aj =
[
Jp(λ0) 0

0 Jp(λ0)

]
and H =

[
0 Zp

Zp 0

]
, (2.3)

whereλ0 ∈ C\R andp ∈ N.
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Moreover, the form(P−1AP,P ∗HP) of (A,H) is uniquely determined up to a
permutation of blocks,and is called the canonical form of(A,H).

This result is well-known; complete proofs are given in [8,24], for example.
Indecomposability (see [9,14,15]) is a key concept in studies ofH-normal

matrices. A matrixA is calledindecomposable, or more preciselyH-indecomposable,
if there is no nontrivial subspaceV ∈ Cn such thatV is H-nondegenerate and
invariant for bothA andA[∗]. Clearly, every matrix can be decomposed as a direct
sum of indecomposable matrices. Moreover,A is H-normal if and only if each of
its indecomposable constituent is normal with respect to the indefinite inner product
induced byH on the correspondingA- and A[∗]-invariant subspace.

Next, we review a form of decomposition forH-normal matrices. This form is
closely related to the decompositions ofH-normal matrices that have been derived
and used in [9,14]. However, the form presented here will not only give information
onX, but also on the self-adjoint and skewadjoint parts ofX. See [21] for a full proof.

Theorem 2. LetX ∈ Cn×n be H-normal. Furthermore,letX = A + S, whereA =
AX is H-self-adjoint andS = SX is H-skewadjoint. Then there exists a nonsingular
matrixP ∈ Cn×n such that

P−1XP = X1 ⊕ · · · ⊕ Xk, P−1AP = A1 ⊕ · · · ⊕ Ak,

P ∗HP = H1 ⊕ · · · ⊕ Hk, P−1SP = S1 ⊕ · · · ⊕ Sk,
(2.4)

where,for each j,the matricesXj ,Aj , Sj andHj have the same size. Furthermore,

eachXj is indecomposable and the corresponding blocksSj andAj have at most
two distinct eigenvalues each. Moreover, the following conditions are satisfied.

(1) If σ(Aj ) = {λ0} andσ(Sj ) = {µ0}, thenλ0 is real, µ0 is purely imaginary and
σ(Xj ) = {λ0 + µ0},

(2) If Aj or Sj has two distinct eigenvalues, then

Aj =
[
Aj1 0
0 A∗

j1

]
, Sj =

[
Sj1 0
0 −S∗

j1

]
, Hj =

[
0 I

I 0

]
.

Furthermore, we haveσ(Aj1) = {λj } andσ(Sj1) = {µj } for someλj , µj ∈ C

andσ(Xj ) = {λj + µj , λj − µj }, whereλj + µj /= λj − µj .

An H-normal matrixX is calledblock-Toeplitzif every indecomposable block ofX
has either only one Jordan block or two Jordan blocks with distinct eigenvalues. The
concept of block-ToeplitzH-normal matrices was introduced and studied in [10,11].
The reason for the notion “block-ToeplitzH-normal” is obvious by the following
theorem (proved in [10]).
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Theorem 3. LetX ∈ Cn×n. Then X is block-Toeplitz H-normal if and only if there
exists a nonsingular matrixP ∈ Cn×n such that

P−1XP = X1 ⊕ · · · ⊕ Xk and P ∗HP = H1 ⊕ · · · ⊕ Hk (2.5)

where,for each j,the matricesXj andHj have the same size, Xj is indecomposable,
and the pair(Xj ,Hj ) has one and only one of the following forms.
(1) Hj = εZp, whereε ∈ {1,−1} andXj is an upper triangular Toeplitz matrix

with nonzero superdiagonal element, i.e.,

Xj =



x0 x1 · · · xp−1

0
...

...
...

...
...

... x1
0 · · · 0 x0


 , (2.6)

wherex1 /= 0.
(2) Xj andHj have the form

Xj =
[
Xj1 0
0 Xj2

]
and Hj =

[
0 Zp

Zp 0

]
, (2.7)

whereXj1 andXj2 are upper triangular Toeplitz matrices with nonzero super-
diagonal elements and the spectra ofXj1 andXj2 are disjoint.

Corollary 4. Every matrix that is H-self-adjoint, or H-skewadjoint,or H-unitary,
is block-Toeplitz.

3. Normality in spaces with indefinite inner products

In the following we discuss which of the conditions listed in [5,12] are equivalent
to H-normality and which are equivalent toH-normality under some extra hypo-
thesis. For the sake of the reader’s direct reference, we assign to these conditions the
same numbers as in the lists of [5,12]. Clearly, we have to adapt some terms in the
conditions to the case of indefinite inner product, i.e., we have to replace terms like
“conjugate transpose”, “Hermitian”, etc. by their corresponding terms in indefinite
inner products, i.e., by “adjoint”, “H-self-adjoint”, etc. Also, several conditions listed
in [5,12] require that some Hermitian, skew-Hermitian, or unitary matrices have
distinct eigenvalues. This requirement will be replaced by the requirement that the
correspondingH-self-adjoint,H-skewadjoint, orH-unitary matrix are nonderogatory.
In the case of definite inner products, the restrictions “to have distinct eigenval-
ues” and “to be nonderogatory” are the same for these sets of matrices, but in the
case of indefinite inner products, they are not, sinceH-self-adjoint,H-skewadjoint,
andH-unitary matrices need not be diagonalizable. Therefore, we prefer the term
“nonderogatory” instead of “having distinct eigenvalues”.
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Let us return to the lists in [5,12]. Conditions (1)–(89) listed there can be supple-
mented by the following conditions:

(90) X is H -normal. (The overbar denotes complex conjugation of every entry.)
(91) There exists a polynomialp and anH-self-adjoint matrixA such thatX =

p(A).
(92) There exists a polynomialpand anH-skewadjoint matrixSsuch thatX = p(S).

In the caseH = I , each of these conditions is easily seen to be equivalent to normal-
ity.

In the following sections, we discuss conditions (1)–(92) and their relations to
H-normal matrices. First, let us introduce the following notation.

A(H) :={M ∈ Cn×n |M is H -self-adjoint},
S(H) :={M ∈ Cn×n |M is H -skewadjoint},
U(H) :={M ∈ Cn×n |M is H -unitary},
N(H) :={M ∈ Cn×n |M is H -normal.}

Furthermore, we denote byT(H) the set of allH-self-adjoint,H-skewadjoint, or
H-unitary matrices, i.e.,

T(H) := A(H) ∪ S(H) ∪ U(H).

The matrices in the setT(H) will be called trivially H-normal. We classify con-
ditions (1)–(92) (except those noted in (a)–(c) below) into the following classes of
conditions depending on their relation to the set ofH-normal matrices.

3.1. Conditions that are not true for all triviallyH-normal matrices, i.e., conditions
that define a setM of matrices such that

T(H) �⊆ M.

3.2. Conditions that are true for all triviallyH-normal matrices, and that are suffi-
cient, but not necessary forH-normality, i.e., conditions that define a setM of
matrices such that

T(H) ⊆ M�N(H).

3.3. Conditions that are equivalent toH-normality, i.e., conditions that define a set
M of matrices such that

M = N(H).

3.4. Conditions that are necessary, but not sufficient forH-normality, i.e., conditions
that define a setM of matrices such that

N(H)�M.

3.5. Conditions that are true for allH-self-adjoint,H-skewadjoint, andH-unitary
matrices, but that are neither sufficient nor necessary forH-normality, i.e.,
conditions that define a setM of matrices such that

T(H) ⊆ M �⊆ N(H) and N(H) �⊆ M.
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In the present paper, we do not consider the following conditions among (1)–(92):

(a) Conditions that involve the positive semidefinite square root ofX∗X, or polar
decompositions: (71), (84)–(86), and (37)–(48).

(b) Conditions that involve a singular value decomposition: (58), (59), and (82).
(c) Conditions that involve the Moore–Penrose inverse: (60) and (61).

In connection with (b) and (c) above note that a generalization of the singular value
decomposition in spaces with indefinite inner products was obtained in [4]. However,
a decompositionX = UDV , where UandV areH-unitary andD is diagonal, need
not exist, even not in the case whenX is H-self-adjoint. Furthermore, although an
analogue of the Moore–Penrose inverse could be defined via the generalization of
the singular value decomposition, at present there is no theory of such indefinite
generalizations of Moore–Penrose inverses, and in particular, it is not clear if they
always exist. As for conditions (a), note that not for everyX ∈ Cn×n there exists
anH-self-adjointA such thatX[∗]X = A2 (compare Theorems 2.1 and 3.1 in [23],
for example; this and other related properties are sorted out in [23] regarding ro-
bustness). Furthermore, it is an open problem whether everyH-normal matrixX has
anH-polar decomposition, i.e., a factorization of the formX = UA, whereA is H-
self-adjoint andU is H-unitary. A partial answer to the question whether having an
H-polar decomposition with commuting factorsA andU (assuming such decompos-
ition exists to start with) is equivalent toH-normality can be found in [21]. There,
it was shown that every nonsingularH-normal matrix has anH-polar decomposition
with commuting factors. On the other hand, examples of singularH-normal matrices
were presented in [21] that admit anH-polar decomposition but do not allowH-polar
decompositions with commuting factors.

3.1. Conditions that are not true for trivially H-normal matrices

Some of the conditions of the lists in [5,12] are obviously not satisfied forH-
normal matrices. As a matter of fact, they already fail for the more restrictive class
T(H). These conditions are out of interest if one tries to find classes ofH-normal
matrices that contain all important special cases. Conditions of this type include
those that state explicitly or implicitly thatX is diagonalizable: (11), (13)–(16), (72),
(83), and (87); and those thatH-self-adjoint,H-skewadjoint, orH-unitary matrices
have only real eigenvalues, purely imaginary eigenvalues, or eigenvalues of modulus
one, respectively: (35) and (36).

TheH-numerical rangeof a matrixX ∈ Cn×n is defined by

WH(X) = {[Xy, y] : y ∈ Cn and[y, y] = 1
}
.

Here[x, y] = 〈Hx, y〉 is the indefinite inner product induced byH. Numerical ranges
in the context of indefinite inner products have been studied recently in [18–20]; in
particular, it is well known (see [2], for example), thatWH(X) is always convex.
However,WH(X) may be unbounded, i.e., theH-numerical radius sup{|z| : z ∈
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WH(X)} may be infinite. The indefinite inner product analogues of conditions (66)–
(70) that involve numerical ranges and numerical radii (in conditions (69) and (70)
x∗Ax should be replaced by[Ax, x]) all fail for an H-self-adjoint matrix whoseH-
numerical radius is infinite andH-numerical range does not intersect eigenvalues, for
example,

X =
[

i 0
0 −i

]
, H = Z2.

Further conditions that are generally not true for the classT(H) are the following.

(8) For anyH-unitaryU for which

U [∗]XU =
[
B11 B12
0 B22

]
with B11 square, the matrixB12 = 0.

(51) If σm(X) = {λ1, . . . , λn}, then there exista1, a2, b1, b2, c1, c2 ∈ C with c1 +
c2 /= 0 such that

σm
(
a1X + a2X

[∗] + b1X
2 + b2X

2[∗] + c1X
[∗]X + c2XX[∗])

= {a1λj + a2λj + b1λ
2
j + b2λ

2
j + (c1 + c2)λjλj | j = 1, . . . , n}.

(53) If σm(X) = {λ1, . . . , λn}, then|λ1|2 + · · · + |λn|2 = trace(X[∗]X).
(54) If σm(X) = {λ1, . . . , λn}, then Re(λ1)

2 + · · · + Re(λn)2 = trace(A2
X).

(55) If σm(X) = {λ1, . . . , λn}, then Im(λ1)
2 + · · · + Im(λn)

2 = −trace(S2
X).

(56) If U is H-unitary and the eigenvalues ofX are displayed on the diagonal of
U [∗]XU , thenU [∗]XU is diagonal.

(57) If σm(X) = {λ1, . . . , λn}, thenσm
(
X[∗]X

) = {|λ1|2, . . . , |λn|2}.
(64) ‖Xv‖ = ‖X[∗]v‖ for all v ∈ Cn.
(81) The functionfv(t) = log‖etXv‖ is convex onR for any vectorv ∈ Cn×n.
(88) If Ck(X) is thekth compound (the matrix whose entries arek × k minors ofX),

then

‖Ck(X)‖ = & (Ck(X)) , k = 1,2, . . . ,

where&(M) is the spectral radius of a matrixM ∈ Cn×n.

Proofs and comments. Conditions (8) and (56) fail for theH-self-adjoint matrix
Jp(λ), where λ∈ R, H = Zp, and U= Ip. Next, considerH = Z2 and theH-self-
adjoint matrix

X =
[
1 + i 0

0 1− i

]
, i.e., X[∗]X = X2 =

[
2i 0
0 −2i

]
.

Then (53)–(55) and (57) fail. Condition (64) is true forH-self-adjoint andH-skew-
adjoint matrices, but fails forH-unitary matrices. For example, considerH = Z2
and

U =
[
1 i
0 1

]
, v =

[
1
i

]
, Uv =

[
0
i

]
, U [∗]v = U−1v =

[
2
i

]
.
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Since each of (81) and (88) is equivalent to normality, i.e.,H-normality withH = I ,
each is violated for anyH-self-adjoint matrixX which is notI-normal, for example,
X = J2(0),H = Z2.

Finally, we verify that (51) fails forH-self-adjoint matrices. More precisely, we
will show that there exist 4× 4 H-self-adjoint matricesX with distinct nonreal ei-
genvalues{λ1, λ2 = λ1, λ3, λ4 = λ3} such that the identity

σm

(
(a1 + a2)X + (b1 + b2 + c1 + c2)X

2
)

= {a1λj + a2λj + b1λ
2
j + b2λ

2
j + (c1 + c2)λjλj | j = 1,2,3,4}, (3.1)

wherea1, a2, b1, b2, c1, c2 ∈ C, may hold true only whenc1 + c2 = 0. To see this,
let λ1 = a + ib, λ3 = c + id, λ2 = λ1, λ4 = λ3, a, b, c, d ∈ R, bd /= 0, be two
pairs of complex conjugate numbers. For every permutationπ of the set{1,2,3,4}
consider the 4× 5 matrixK = K(a, b, c, d;π) whosejth row is[

λj − λπ(j), λj − λπ(j), λ
2
j − λ2

π(j), λ
2
j − λπ(j)

2
, λ2

j − |λπ(j)|2
]
,

j = 1,2,3,4.
Then the right most column ofK(a, b, c, d;π) is linearly independent of the four
other columns ofK(a, b, c, d;π). Indeed, upon adding the first, second, and third
rows to the fourth row ofK(a, b, c, d;π), a simple computation shows that the new
fourth row has the form[0 0 0 0 − 4b2 − 4d2].

Let X be a 4× 4 H-self-adjoint matrix having the eigenvaluesλ1, λ2, λ3, and λ4.
If (3.1) were true for somea1, a2, b1, b2, c1, c2 ∈ C with c1 + c2 /= 0, then for some
permutationπ of the{1,2,3,4} we would have

K(a, b, c, d;π)




a1
a2
b1
b2

c1 + c2


 = 0.

This contradicts the linear independence of the right most column ofK(a, b, c, d;π)
of the four other columns ofK(a, b, c, d;π). �

3.2. Conditions that are true for all trivially H-normal matrices, and that are
sufficient, but not necessary for H-normality

(6) XB = BX impliesX[∗]B = BX[∗], for everyB.
(17) There exists a polynomialp such thatX[∗] = p(X).
(18) X commutes with some nonderogatoryH-normal matrix.
(19) X commutes with some nonderogatoryH-self-adjoint matrix.
(65) X[∗] = UX for someH-unitaryU.
(91) There exists a polynomialp and anH-self-adjoint matrixA such thatX =

p(A).
(92) There exists a polynomialpand anH-skewadjoint matrixSsuch thatX = p(S).
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Proofs and comments. Observe that (6)⇐⇒ (17); this follows from a general res-
ult that the algebra generated by the identity and one linear transformation
on a finite dimensional vector space coincides with its double commutant (see [17,
p. 113].). We shall see later (Theorem 11) that

(18) ⇐⇒ (19) ⇐⇒ (91) ⇐⇒ (92).

Thus, it is sufficient to consider conditions (6), (65), and (91).
Condition (6) is clear forX ∈ T(H). H-normality follows from (6) withB = X.
Condition (65) is clearly true for matrices in the classT(H). Moreover, it follows

from [4, Lemma 4.1] thatX[∗] = UX for someH-unitaryU if and only if

X[∗]X = XX[∗] and Ker(X) = Ker(X[∗]). (3.2)

Thus, (65) impliesH-normality.
Condition (91) was proved for block-ToeplitzH-normal matrices in [10]. It is

clear that (91) impliesH-normality.
On the other hand, consider the example

H =




0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0


 , X =




0 1 1 0
0 0 0 0
0 0 0

√
2

0 0 0 0


 ,

X[∗] =




0 0
√

2 0
0 0 0 1
0 0 0 1
0 0 0 0


 ,

(3.3)

Then X is H-normal and indecomposable (see [9]). However, (6) is not satisfied,
because setting

B =




0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,

we obtain thatX andB commute, butX[∗] andB do not. Moreover, (65) fails, since
Ker(X) /= Ker(X[∗]) (see (3.2)). Condition (91) fails as well, since everyH-self-
adjoint matrixA has to be decomposable forH given by (3.3), as it is easily seen
from Theorem 1. But then, alsop(A) would be decomposable for any polynomialp.

�

3.3. Conditions that are equivalent to H-normality

(0) X is H-normal.
(1) p(X) is H-normal for every polynomialp.
(2) X−1 is H-normal (as long asX is nonsingular).
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(3) X−1X[∗] is H-unitary (as long asX is nonsingular).
(4) X = X[∗]X(X−1)[∗] (as long asX is nonsingular).
(5) X commutes withX−1X[∗] (as long asX is nonsingular).
(7) U [∗]XU is H-normal for every (or for some)H-unitaryU.

(21) AXSX = SXAX.
(22) XAX = AXX.
(23) XAX + AXX

[∗] = 2A2
X (= AXX + X[∗]AX).

(24) XSX = SXX.
(25) XSX − SXX

[∗] = 2S2
X (= SXX − X[∗]SX).

(26) A−1
X X + X[∗]A−1

X = 2I (= XA−1
X + A−1

X X[∗]) (as long asAX is nonsingular).
(27) S−1

X X − X[∗]S−1
X = 2I (= XS−1

X − S−1
X X[∗]) (as long asSX is nonsingular).

(62) [Xv,Xw] = [X[∗]v,X[∗]w] for all v,w ∈ Cn.
(63) [Xv,Xv] = [X[∗]v,X[∗]v] for all v ∈ Cn.
(75) A2

X − S2
X = X[∗]X (orXX[∗]).

(79) exp(tmX) is H-normal for a sequence(tm) /= 0, converging to zero.
(89) The operatorMX = In ⊗ X + X ⊗ In on Cn2×n2

is H ⊗ H -normal.
(90) X is H -normal.

Note thatMX is a description of the Lyapunov operatorLX : Cn×n → Cn×n,

Y �→ (XY + YX∗).

Proofs and comments. Most of the proofs are straightforward or proceed exactly
as in [5,12]. For example, the proof of the sufficiency of condition (79) uses the
equality

X = lim
tm→0

1

tm
(exp(tmX) − In) .

Condition (89), however, has to be shown in a different way. Therefore, let us com-
pute the adjoint ofMX. We use the abbreviationG = H ⊗ H .

M
[∗]G
X =(H ⊗ H)−1(In ⊗ X + X ⊗ In)

∗(H ⊗ H)

=In ⊗ (H−1X∗H) + (H
−1

X
∗
H) ⊗ In

=In ⊗ X[∗]H + X
[∗]H ⊗ In

From this we obtain

M
[∗]G
X MX =In ⊗ (X[∗]HX) + X ⊗ X[∗]H + X

[∗]H ⊗ X + (X
[∗]HX) ⊗ In,

MXM
[∗]G
X =In ⊗ (XX[∗]H ) + X ⊗ X[∗]H + X

[∗]H ⊗ X + (XX
[∗]H ) ⊗ In.

Thus, conditions (0) and (90) imply theH ⊗ H -normality ofMX. On the other hand,
if MX is H ⊗ H -normal, then
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0 = In ⊗ (XX[∗]H − X[∗]HX) + (XX
[∗]H − X

[∗]H
X) ⊗ In

= In ⊗ B + B ⊗ In,

whereB = XX[∗]H − X[∗]HX. Comparing the left uppern × n blocks in this equal-
ity, we find thatB = [bjk]nj,k = −b11In. The latter equality is true if and only if
B = irIn, wherer ∈ R. Note thatB is H-self-adjoint as a difference of twoH-self-
adjoints and that the only eigenvalue ofB is ir. This is possible if and only ifr = 0
(cf. Theorem 1). This implies theH-normality ofX. �

3.4. Conditions that are necessary, but not sufficient for H-normality

We start withH-semidefinite matrices. One can generalize the notion of positive
semidefinite matrices to indefinite inner products in at least three ways: Ann × n

H-self-adjoint matrixB is calledH-nonnegativeif (1) HB is positive semidefinite; or
if (2) there exists anH-self-adjoint matrixC such thatB = C2; or if (3) the num-
ber of positive (resp. negative) eigenvalues ofHB, counted with multiplicities, does
not exceed the number of positive (resp. negative) eigenvalues ofH, also counted
with multiplicities. All three ways are equivalent ifH = I , and are mutually not
equivalent ifH is indefinite (the nonequivalence is easily seen by examples for 2× 2
matrices, takingH = Z2). Accordingly, we say that anH-self-adjoint matrixB is
H-nonnegative(i) if it satisfies the definition (i);i = 1,2,3. TheH-nonnegative(3)
matrices are calledH-consistent in [4].

Conditions that are necessary, but not sufficient forH-normality are:

(20) X[∗]X − XX[∗] is H-nonnegative(i).
(28) Every eigenvector ofAX is also an eigenvector ofSX (as long asAX is non-

derogatory).
(29) Every eigenvector ofSX is also an eigenvector ofAX (as long asSX is non-

derogatory).
(30) Every eigenvector ofAX is also an eigenvector ofX (as long asAX is non-

derogatory).
(32) Every eigenvector ofSX is also an eigenvector ofX (as long asSX is nonderog-

atory).
(34) If σm(AX) = {α1, . . . , αn} andσm(SX) = {β1, . . . , βn}, then there exists a per-

mutation& of {1, . . . , n} such that

σm(X) = {
αj + β&(j) | j = 1, . . . , n

}
.

(49) If σm(X) = {λ1, . . . , λn}, then there exists a permutation& of {1, . . . , n} such
that

σm

(
X[∗]X

)
= {λjλ&(j) | j = 1, . . . , n}.

(50) If σm(X) = {λ1, . . . , λn}, then there exist a permutation& of {1, . . . , n} and
a, b ∈ C\{0} such that
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σm

(
aX + bX[∗]) = {aλj + bλ&(j) | j = 1, . . . , n}.

(52) If σm(X) = {λ1, . . . , λn}, then there exista2 = a1 ∈ C, b2 = b1 ∈ C, c1, c2
real, such thatc1, c2 are not both zero and the equation given in (51) holds.

(73) X commutes withXX[∗] − X[∗]X.
(74) X commutes withX[∗]X (or withXX[∗]).
(76) trace(X2[∗]X2) = trace

(
(X[∗]X)2

)
.

(77) trace(Xp[∗]Xp) = trace
(
(X[∗]X)p

)
for some positive integerp � 2.

(78) trace
(
(Xp[∗]Xp)q

) = trace
(
(X[∗]X)pq

)
for some positive integersp � 2,

q � 1.
(80) trace(eX

[∗]
eX) = trace(eX

[∗]+X).

Proofs and comments. To see that (20)(i), (28)–(30), (32), and (52) are not suffi-
cient forH-normality, consider the following example.

X =
[

0 1 0
0 0 3
0 0 0

]
and H = Z3. (3.4)

We then obtain

AX =
[

0 2 0
0 0 2
0 0 0

]
, SX =

[
0 −1 0
0 0 1
0 0 0

]
, X[∗] =

[
0 3 0
0 0 1
0 0 0

]
.

Note thatAX andSX do not commute, hence,X is not H-normal. ButX satisfies
(28)–(30), (32), and (52) for alla1, b1, c1, c2. Since

X[∗]X − XX[∗] =
[

0 0 8
0 0 0
0 0 0

]
,

[
0

√
8 0

0 0
√

8
0 0 0

]2

=
[

0 0 8
0 0 0
0 0 0

]
,

X satisfies also (20)(i), for i = 1,2,3.
ConsiderH = Z4 and the matrixX = A + S defined by

A =



1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 and S =




i 0 0 0
0 i i 0
0 0 i 0
0 0 0 i


 . (3.5)

Note thatA is H-self-adjoint andS is H-skewadjoint, i.e.,A = AX and S = SX.
However,A andSdo not commute. Hence the matrices

X =



1 + i 1 0 0
0 1+ i i 0
0 0 1+ i 1
0 0 0 1+ i


 ,

X[∗] =



1 − i 1 0 0
0 1− i −i 0
0 0 1− i 1
0 0 0 1− i




(3.6)
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are notH-normal. But,X satisfies conditions (34), (49) (both with& = identity), (50)
(for all a, b and with& = identity), (76)–(78), and (80). For the proof of (80), note
that alsoeX

[∗]
, eX, andeX

[∗]+X are upper triangular. A counterexample for (73) and
(74) is given by

X =




0 1 1 0
0 0 0 −1
0 0 0 1
0 0 0 0


 , H = Z4, X[∗] =




0 1 −1 0
0 0 0 1
0 0 0 1
0 0 0 0


 .

We then obtain

XX[∗] =




0 0 0 2
0 0 0 0
0 0 0 0
0 0 0 0


 and X[∗]X =




0 0 0 −2
0 0 0 0
0 0 0 0
0 0 0 0


 ,

i.e.,X is notH-normal. However, (73) and (74) are satisfied.
On the other hand note that (20)(i), (28)–(30), (32), (34), (49), (50), (52), (73),

(74), and (76)–(78) are true forH-normal matrices. This is obvious for (20)(i), (73),
(74), (76)–(78), and (80); and this follows from Theorem 2 for (34). Moreover, if
X is H-normal, then the fact thatX and X[∗] commute implies that there exists
a nonsingular matrixP ∈ Cn×n such thatP−1XP andP−1X[∗]P are both upper
triangular (see Section 9.2 in [7], for example). From this, we can see that the
conditions (49) and (50) are satisfied. Furthermore, condition (52) is satisfied with
a1 = a2 = b1 = b2 = 0 and c1 = −c2. It remains to show (28)–(30) and (32). There-
fore, note thatH-normality of X implies thatAX andSX commute. Let us assume
thatAX is nonderogatory. Ifv /= 0 is such thatAXv = λv, then

AX(SXv) = SX(AXv) = λSXv.

SinceAX is nonderogatory,SXv must be a multiple ofv, i.e.,v is an eigenvector of
SX. This implies (28); and analogously we show that (29), (30), and (32) hold true
for H-normal matrices. �

3.5. Conditions that are true for all trivially H-normal matrices, but that are neither
sufficient nor necessary for H-normality

(9) If W ⊆ Cn is an invariant subspace forX, then so is W[⊥].
(10) If v is an eigenvector ofX, then v[⊥] is an invariant subspace forX.
(12) If v is an eigenvector ofX, then vis an eigenvector ofX[∗].
(31) Every eigenvector ofX is also an eigenvector ofAX.
(33) Every eigenvector ofX is also an eigenvector ofSX.

Proofs and comments. Condition (9) holds forH-self-adjointsA: Let W be A-
invariant andv ∈ W⊥, i.e., v∗Hw = 0 for all w ∈ W. We have to show Av∈
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W⊥. This follows from v∗A∗Hw = v∗HAw = 0 for all w ∈ W. The proof for
H-skewadjoint andH-unitary matrices proceeds analogously. Condition (9) implies
condition (10). Conditions (12), (31), and (33) are clearly true for all matrices in the
classT(H). (Note that (12) implies (31) and (33), because ofAX = 1

2(X + X[∗])
andSX = 1

2(X − X[∗]).)
On the other hand consider example (3.4). There, (9), (10), (12), (31), and (33)

are satisfied, but the matrix is notH-normal. (Observe thatv[⊥] = (Hv)⊥.)

Moreover, consider example (3.3). Then we obtain

AX = 1

2




0 1 1+ √
2 0

0 0 0 1
0 0 0 1+ √

2
0 0 0 0


 ,

SX = 1

2




0 1 1− √
2 0

0 0 0 −1
0 0 0

√
2 − 1

0 0 0 0


 .

Choosingv = [
0 1 −1 0

]T, we see that (9), (10), (12), (31), and (33) fail
althoughX = AX + SX is H-normal.

Note that (31) and (33) fail already for block-ToeplitzH-normals. To demonstrate
that, consider

X =

0 0 0

0 0 0
0 0 1


 , H =


1 0 0

0 0 1
0 1 0


 .

Then

X[∗] =

0 0 0

0 1 0
0 0 0


 , AX =


0 0 0

0 1/2 0
0 0 1/2


 ,

SX =

0 0 0

0 −1/2 0
0 0 1/2


 ,

and[1 1 0]T is an eigenvector ofX which is not an eigenvector ofAX or of SX. �

4. Proper subclasses of the class of H-normal matrices

In this section we focus on some proper subclasses ofH-normal matrices that
contain allH-self-adjoint,H-skewadjoint, andH-unitary matrices. Besides the class
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of matrices defined by condition (65) (this class contains in particular all nonsingular
H-normal matrices and thus, from the viewpoint of classification, we have the same
problems as in the case of classifying allH-normal matrices), these are the class of
matrices that we call polynomiallyH-normal matrices (see Section 4.1) and the class
of polynomials ofH-self-adjoint matrices (see Section 4.2).

4.1. Polynomially H-normal matrices

In this section, we focus on the equivalent conditions (6) and (17) of the list in
Section 3.2. A matrixX ∈ Cn×n will be calledpolynomially H-normalif (17) (or (6))
is satisfied. It will turn out that every polynomiallyH-normal matrix is block-Toeplitz
H-normal. Therefore, we will need the following lemma.

Lemma 5. Let p(t) = a1t + · · · + alt
l ∈ C[t] be a polynomial such thata1 /= 0.

Furthermore, letm � k andH ∈ Cm×k be such thatp (Jm(0))
∗ H = Hp (Jk(0)).

Then

H = m − k

k

k[
0
H̃

]
and H̃ =




0 0 hm−k+1,k

0 q
...

hm1 . . . hmk


 ,

wherehm−j,j+1 = (a1/a
∗
1)hm−j+1,j .

Proof. LetH = (hij ). Then we have the following matrix equation:


0 · · · · · · 0

a∗
1

...
...

...
...

...
...

a∗
m · · · a∗

1 0






h11 · · · h1k
...

...
...

hm1 · · · hmk




=


h11 · · · h1k
...

...
...

hm1 · · · hmk







0 a1 · · · ak
...

...
...

...
...

... a1
0 · · · · · · 0


 . (4.1)

Comparing the first columns of each side and noting thata1 /= 0, we find thath11 =
· · · = hm−1,1 = 0. Then, comparing the second columns, we find thath12 = · · · =
hm−2,2 = 0 andhm−1,2 = (a1/a

∗
1)hm1. Repeating this procedure, we finally see that

H has the structure stated in the lemma.�

Theorem 6. LetX ∈ Cn×n be polynomially H-normal. Then X is block-Toeplitz H-
normal.
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Proof. Let X[∗] = p(X) for a polynomialp. If we denote theH-self-adjoint and
H-skewadjoint part ofX by A andS, respectively, then we obtain in particular

A = 1

2
(X + X[∗]) = pA(X) and S = 1

2
(X − X[∗]) = pS(X),

wherepA(t) = 1
2(t + p(t)) andpS(t) = 1

2(t − p(t)).
If Q is nonsingular, then(Q−1XQ)[∗]Q∗HQ = Q−1X[∗]HQ = Q−1p(X)Q

= p(Q−1XQ). Therefore, we may assume thatX and H are in the form (2.4) of
Theorem 2 and we may consider the blocks separately. There are two cases.

Case1. X has only one eigenvalue.Without loss of generality, we may assume that
the eigenvalue ofX is zero, because ifX[∗] is a polynomial inX, then clearlyY [∗] :=
X[∗] − λ∗

0I is a polynomial inY := X − λ0I for everyλ0 ∈ C. In particular, we may
assume that alsoA andShave only the eigenvalue zero. Now assume furthermore that
X is in Jordan canonical form

X =



X1 0

...
Xk−1

0 Xk


 ,

whereX1 = · · · = Xk−1 = Jm(0) are the Jordan blocks of maximal sizem andXk

contains all the Jordan blocks of size smaller thanm. We then obtain

A = pA(X), S = pS(X), H =


H11 · · · H1k
...

...
...

H ∗
1k · · · Hkk


 .

SinceX,A and S are upper triangular and nilpotent, we find thatpA(t) = a1t +
· · · + alt

l andpS(t) = s1t + · · · + sl t
l , i.e., the coefficients ofpA andpS that cor-

respond tot0 are both zero. Furthermore, we have by construction ofpA andpS

thata1 /= 0 or s1 /= 0. Let us assume thata1 /= 0 (if s1 /= 0, an analogous argument
applies). Now it follows from Lemma 5 thatH has a very special structure. In partic-
ular, the first row of the blockH1k is equal to zero. SinceH is nonsingular, it follows
that there exists at least onep ∈ {1, . . . , k − 1} such thatH1p has a nonzero entry in
the first row. It follows from Lemma 5 that this is necessarily the(1, m)-element on
the main anti-diagonal ofH1p and furthermore that all the entries on the main anti-
diagonal are nonzero, i.e.,H1p is nonsingular. We will show now that it is possible
to decomposeX andH. Therefore, we distinguish two cases.

Case1(a).At least one ofH11 andHpp is nonsingular.Say,H11 is nonsingular.
Otherwise we may exchange the blocksHpp andH11 by block row and column
permutations. Note that these permutations have no effect onA andS. Setting

P =



I −H−1

11 H12 · · · −H−1
11 H1k

I

...
I


 ,
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it follows that

P ∗HP =
[
H11 0
0 H̃22

]
, P−1AP =

[
pA(X1) Ã12

0 Ã22

]
,

P−1SP =
[
pS(X1) S̃12

0 S̃22

]
.

SinceP−1AP is P ∗HP -self-adjoint, we obtain thatH11Ã12 = 0, i.e., Ã12 = 0.
Analogously, we find that̃S12 = 0.

Case1(b). If H11 andHpp are singular, then necessarily the entries on their main
anti-diagonals are zero. According to Lemma 5,H1p andH ∗

1p have the following
form:

H1p =




0
(
a1
a∗

1

)m−1
z

...(
a1
a∗

1

)0
z ∗


 ,

H ∗
1p =




0
(
a∗

1
a1

)0
z∗

...(
a∗

1
a1

)m−1
z∗ ∗




for somez ∈ C\{0}. This implies that the entries on the main anti-diagonal ofH1p +
H ∗

1p are nonzero if and only ifz∗ + (a1/a
∗
1)

m−1z /= 0. Analogously, the entries on

the main anti-diagonal ofH1p − H ∗
1p are nonzero if and only ifz∗ /= (a1/a

∗
1)

m−1z.
Let us consider two more subcases.

Subcase(b1) Assume thatz∗ + (a1/a
∗
1)

m−1z /= 0. Consider the 2m × 2m sub-
matrices ofH, A andS that are defined by the blocks with indices 1 andp. Then,
setting

Q = 1√
2

[
I −I

I I

]
,

we obtain that

H̃ :=
[
H̃11 H̃1p

H̃ ∗
1p H̃pp

]
:= Q∗

[
H11 H1p
H ∗

1p Hpp

]
Q,

whereH̃11 = H11 + H1p + H ∗
1p + Hpp. From the discussion above, it is now clear

that the entries on the main anti-diagonal ofH̃11 are nonzero, i.e.,̃H11 is nonsingular.
TransformingH, A, and Sby a corresponding transformation that only affects the first
andpth block rows and block columns, we find in particular that this transformation
has no effect onA or S, since X1 = Xp. Thus, we reduced the problem to Case 1(a).
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Subcase(b2) If z∗ + (a1/a
∗
1)

m−1z = 0, thenz∗ /= (a1/a
∗
1)

m−1z. In this case, the
proof proceeds analogously to Subcase (b1) by taking

Q̃ = 1√
2

[
iI I

I iI

]
instead ofQ noting that

Ĥ :=
[
Ĥ11 Ĥ1p

Ĥ ∗
1p Ĥpp

]
:= Q̃∗

[
H11 H1p
H ∗

1p Hpp

]
Q̃,

whereĤ11 = H11 − i(H1p − H ∗
1p) + Hpp.

Altogether, we find that in both cases 1(a) and (b) there exists a nonsingular matrix
R, such that

R∗HR =
[
H1 0
0 ∗

]
and R−1XR = R−1(A + S)R =

[
X1 0
0 ∗

]
,

for someH1 ∈ Cm×m. ClearlyX1 is block-ToeplitzH1-normal, since it has only one
Jordan block. Thus, the rest of Case (1) follows by an induction argument.

Case2. X has two distinct eigenvaluesµ andλ. According to Theorem 2, we may
assume that

X =
[
X11 0
0 X22

]
and H =

[
0 I

I 0

]
,

whereX11 has the eigenvalueµ andX22 has the eigenvalueλ. Moreover, we may
assume without loss of generality thatX is indecomposable.

SinceX[∗] = p(X), we have in particular thatX∗
22 = p(X11). Assume thatX11

is in Jordan canonical form. Then it is clear thatX22 has a block diagonal structure
that corresponds to that ofX11. Therefore, by row and column permutations, we can
decomposeX andH into corresponding block diagonal forms

X = X1 ⊕ · · · ⊕ Xk and H = H1 ⊕ · · · ⊕ Hk

such that

Xj =
[
Jpj (µ) 0

p
(
Jpj (µ)

)∗
]

and Hj =
[

0 Ipj
Ipj 0

]
.

SinceX is indecomposable, we must havek = 1, i.e.,X is block-ToeplitzH-normal.
�

The following example shows that not every block-Toeplitz H-normal matrix is
polynomiallyH-normal.

Example 7. Consider the block ToeplitzH-normal matrix

X =




0 1 0 0
0 0 0 0
0 0 0 i
0 0 0 0


 and H =

[
Z2 0
0 Z2

]
.
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This implies

X[∗] =




0 1 0 0
0 0 0 0
0 0 0 −i
0 0 0 0


 and X2 = 0.

If p(t) = p0 + p1t + · · · + pmt
m is any polynomial, thenp(X) = p0I + p1X. But

obviously we haveX[∗] /= p(X). Thus,X is not polynomiallyH-normal.

4.2. Matrices that are polynomials in H-self-adjoint matrices

In this section we focus on conditions (18), (19), (91), and (92) of Section 3.2. It
is our goal to show that all these conditions are equivalent and to present a “canonical
form” for these matrices. This requires some preparations.

Lemma 8. LetX = ∑n−1
k=m xkJn(0)k, wherexm /= 0. Then X has an mthroot of the

form

R =
n−1∑
k=1

rkJn(0)
k, r1 /= 0.

If xm, . . . , xn−1 are real andxm > 0 for m even,then R can be chosen to be real.

Proof. Write

X = (
xmJn(0)

m
)
(I + Q), Q =

n−1∑
k=m+1

x−1
m xkJn(0)

k−m,

and observe thatI + Q has anmth root

(I + Q)1/m = I +
n−1∑
k=1

f (k)(0)

k! Qk,

wheref (t) = (1 + t)1/m. Now the lemma is obvious. �

Lemma 9. Letn > m ∈ N, and

B = λIn +
n−1∑
k=m

bk (Jn(0))
k and C = µIn +

n−1∑
k=m

ck (Jn(0))
k ,

whereλ,µ, bk, ck ∈ C for k = m, . . . , n − 1andbm /= 0. Then there exists a nonsin-
gular matrixP ∈ Cn×n such that

P−1BP = λIn + (Jn(0))
m and P−1CP = µIn +

n−1∑
k=m

tk (Jn(0))
k

for sometk ∈ C, k = m, . . . , n − 1. Moreover,if bk ∈ R for k = m, . . . , n − 1, and
bm > 0 if m is even,then P can be chosen such that in additionP ∗ZnP = Zn.
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Proof. Without loss of generality, we may assumeλ = µ = 0 (otherwise we sub-
tract the diagonals fromB andC). Then it follows from Lemma 8 thatB has anmth
rootRof the form

R =
n−1∑
k=1

rk (Jn(0))
k ,

whererk ∈ C for k = 1, . . . , n− 1 and r1 /= 0. Hence, there exists a nonsingular
matrixP ∈ Cn×n such that

P−1RP = Jn(0).

This implies in particular thatP−1BP = (Jn(0))
m. On the other hand, we note that

C commutes withJn(0) and therefore, it also commutes withR. But thenP−1CP

commutes withP−1RP = Jn(0) and since rank(C)� n − m, we obtain that

P−1CP =
n−1∑
k=m

tk (Jn(0))
k

for sometk ∈ C, k = m, . . . , n − 1. Moreover, ifbk ∈ R for k = m, . . . , n − 1, and
bm > 0 (if m is even), thenr1, . . . , rn−1 can be chosen real. Thus,R is Zn-self-
adjoint and by Theorem 1 the matrixP can be chosen so thatP ∗ZnP = Zn and
P−1RP = Jn(0). �

Lemma 10. LetX ∈ Cn×n commute with the nonderogatory H-normal matrixY ∈
Cn×n. Then there exists a nonsingular matrixP ∈ Cn×n such that

P−1XP = X1 ⊕ · · · ⊕ Xk and P ∗HP = H1 ⊕ · · · ⊕ Hk (4.2)

where,for each j,the matricesXj andHj have the same size and the pair(Xj ,Hj )

has one and only one of the following forms:
(1) Hj = εZp, whereε ∈ {1,−1} andXj is an upper triangular Toeplitz matrix.
(2) Xj andHj have the form

Xj =
[
Xj1 0
0 Xj2

]
and Hj =

[
0 Zp

Zp 0

]
, (4.3)

whereXj1 andXj2 are upper triangular Toeplitz matrices.
In particular, X is H-normal.

Proof. First, we note that a matrixS ∈ Cm×m that commutes with an upper trian-
gular Toeplitz matrixT ∈ Cm×m with nonzero superdiagonal entry is necessarily an
upper triangular Toeplitz matrix. To see this, letT have the eigenvalue zero (other-
wise subtract the diagonal fromT), and use the facts thatT is similar toJm(0), and
that every matrix that commutes withJm(0) is in fact a polynomial ofJm(0).
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Next, we note thatY is necessarily block ToeplitzH-normal, forY is nonderog-
atory. Hence, we may assume thatY is block diagonal with diagonal blocks of the
form (2.6) or (2.7). SinceY is nonderogatory andX commutes withY, it follows
thatX has a corresponding block diagonal structure and, therefore, we may consider
the blocks separately. First, let us assume thatY ∈ Cn×n is of the form (2.6) and
H = ±Zn. Then we have shown thatX is an upper triangular Toeplitz matrix. If
Y ∈ Cn×n is of the form (2.7), then the fact thatY is nonderogatory implies thatX
has a corresponding block diagonal structure, i.e., we have

Y =
[
Y11 0
0 Y22

]
, H =

[
0 Z

Z 0

]
, X =

[
X11 0
0 X22

]
,

whereY11 andY22 are upper triangular Toeplitz matrices with nonzero superdiagonal
element andXkk commutes withYkk for k = 1,2. This implies that bothX11 and
X22 are upper triangular Toeplitz matrices. In both cases theH-normality of X is
clear. �

We note thatX in Lemma 10 is not necessarily block-ToeplitzH-normal, since
the superdiagonal elements of the Toeplitz matrices in (4.2) may be zero.

Theorem 11. Let X ∈ Cn×n and letAX andSX denote the H-self-adjoint and H-
skewadjoint parts of X, respectively. Then the following conditions are equivalent.

(i) X commutes with some nonderogatory H-normal matrix.
(ii) X commutes with some nonderogatory H-self-adjoint matrix.

(iii) There exists a polynomial p and an H-self-adjoint matrix A such thatX =
p(A).

(iv) There exists a polynomial p and an H-skewadjoint matrix S such thatX =
p(S).

(v) There exists a nonsingular matrixP ∈ Cn×n such that

P−1XP = X1 ⊕ · · · ⊕ Xk, P−1AXP = A1 ⊕ · · · ⊕ Ak,

P ∗HP = H1 ⊕ · · · ⊕ Hk, P−1SXP = S1 ⊕ · · · ⊕ Sk,
(4.4)

where, for each j, the matricesXj ,Aj , Sj , and Hj have the same size and
satisfy one and only one of the following conditions.

1. We have

Aj = λIp + δ
(
Jp(0)

)m
, Sj = iµIp +

n−1∑
k=m

isk
(
Jp(0)

)k
,

(4.5)
Hj = εZp,

wherem,p ∈ N with m � n, λ, µ ∈ R, sk ∈ R for k = m, . . . , n − 1, and
δ, ε = ±1.
2. We have

Aj = λIp +
n−1∑

k=m+1

ak
(
Jp(0)

)k
, Sj = iµIp + iδ

(
Jp(0)

)m
,
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Hj = εZp, (4.6)
wherem,p ∈ N withm � n, λ, µ ∈ R, ak ∈ R for k = m + 1, . . . , n− 1,and
δ, ε = ±1.
3. We have

Aj =
[
Aj1 0
0 A∗

j1

]
, Sj =

[
Sj1 0
0 −S∗

j1

]
,

(4.7)

Hj =
[

0 Ip
Ip 0

]
,

wherep ∈ N, n � m ∈ N, λ, µ ∈ C with λ + µ /= λ∗ − µ∗, and either

Aj1 = λIp + (
Jp(0)

)m
and Sj1 = µIp +

n−1∑
k=m

sk
(
Jp(0)

)k (4.8)

for somesk ∈ C, k = m, . . . , n − 1, or else

Aj1 = λIp +
n−1∑

k=m+1

ak
(
Jp(0)

)k
(4.9)

Sj1 = µIp + i
(
Jp(0)

)m
for someak ∈ C, k = m + 1, . . . , n− 1.

Proof. (i) ⇒ (ii): By Lemma 10, we may assume thatX andH are in the form (4.2),
i.e.,

X = X1 ⊕ · · · ⊕ Xq ⊕
[
Xq+1,1 0

0 Xq+1,2

]
⊕ · · · ⊕

[
Xr1 0
0 Xr2

]
,

H = ε1Zp1 ⊕ · · · ⊕ εkZpq ⊕ Z2pq+1 ⊕ · · · ⊕ Z2pr ,

(4.10)

where all blocksXj for j = 1, . . . , q and all blocksXj1, Xj2 for j = q + 1, . . . , r
are upper triangular Toeplitz matrices. But then,X commutes with theH-self-adjoint
matrix

Jp1(λ1) ⊕ · · · ⊕ Jpq (λq) ⊕
[
Jpq+1(λq+1) 0

0 Jpq+1(λq+1)

]

⊕ · · · ⊕
[
Jpr (λr) 0

0 Jpr (λr)

]
,

whereλ1, . . . , λq ∈ R. Clearly, the parametersλ1, . . . , λr can be chosen so that this
H-self-adjoint matrix is nonderogatory.

(ii) ⇒ (iii): Let X commute with the nonderogatoryH-self-adjoint matrixA and
assume thatA is in Jordan canonical formA = Jp1(λ1) ⊕ · · · ⊕ Jpr (λr), where
λ1, . . . , λr are pairwise distinct. (Note that we do not claim thatH can be reduced
to a corresponding block diagonal form.) SinceX commutes withA, it has a corres-
ponding block diagonal formX = X1 ⊕ · · · ⊕ Xr , where Xj is an upper triangular
Toeplitz matrix,j = 1, . . . , r. There exist polynomialspj such that

pj

(
Jpj (λj )

) = Xj and pj

(
Jpl (λl)

) = 0 for l /= j.
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(This follows from [16, Theorem 6.1.9(b)].) Thenp(t) := ∑r
j=1pj (t) satisfies

p(A) = X.
(iii) and (iv) are obviously equivalent:p(A) = p̃(iA), wherep̃(t) = p(−it).
(iii) ⇒ (v): Assume that (iii) holds for someH-self-adjoint matrixA. Then we

may assume that(A,H) is in the canonical form (2.1) and we may consider the
blocks separately. We will distinguish two cases.

Case(a). Assume thatA = Jn(α) andH = εZn for someα ∈ R andε = ±1.
ThenX is an upper triangular Toeplitz matrix andAX andSX have the following
forms:

AX = λIn +
n−1∑
k=1

bk (Jn(0))
k and SX = iµIn +

n−1∑
k=1

ick (Jn(0))
k ,

whereλ,µ ∈ R, bk ∈ R, ck ∈ R, for k = 1, . . . , n− 1. If AX andSX are diagonal,
then there is nothing to prove. Hence, letn > m ∈ N such thatb2

j + c2
j = 0 for j <

m andb2
m + c2

m /= 0. We assume without loss of generality thatbm /= 0 and we show
that in this case the form (4.5) can be obtained. (Otherwise, we havecm /= 0 and
we may consideriX to show that the form (4.6) can be obtained.) Ifbm > 0, then it
follows from Lemma 9 that there exists a nonsingular matrixP ∈ Cn×n such that

P−1AXP = λIn + (Jn(0))
m , P−1SXP = iµIn +

n−1∑
k=m

isk (Jn(0))
k

P ∗HP = H,

for somesk ∈ C. SinceSX is still H-skewadjoint, we havesk ∈ R for k = m, . . . , n −
1. On the other hand, ifbm < 0, then the above argument can be applied to−X (or
−AX and−SX, respectively), which implies the existence of a nonsingular matrix
P ∈ Cn×n such that

P−1(−AX)P = −λIn + (Jn(0))
m ,

P−1(−SX)P = −iµIn +
n−1∑
k=m

is̃k (Jn(0))
k

andP ∗HP = H , or, equivalently,

P−1AXP = λIn − (Jn(0))
m , P−1SXP = iµIn +

n−1∑
k=m

isk (Jn(0))
k ,

P ∗HP = H,

for somes̃k ∈ C andsk = −s̃k.
Case(b). Assume that
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A =
[
Jp(α) 0

0 Jp(α)
∗
]

and H =
[

0 Ip
Ip 0

]
,

wherep = n/2 and α∈ C\R. Then X,AX andSX have the form

X =
[
Y1 0
0 Y ∗

2

]
, AX =

[
Y1 + Y2 0

0 (Y1 + Y2)
∗
]
,

SX =
[
Y1 − Y2 0

0 (Y2 − Y1)
∗
]
,

whereY1 andY2 are upper triangular Toeplitz matrices. Repeating the argument of
Case (a), we find by applying the first part of Lemma 9 that there exists a nonsingular
matrixQ such that

Q−1(Y1 + Y2)Q = Aj1 and Q−1(Y1 − Y2)Q = Sj1,

whereAj1 andSj1 are as in (4.8) or (4.9), respectively. Then setting

P =
[
Q 0
0 (Q∗)−1

]

yields the desired result.
(v) ⇒ (i): Assume thatP−1XP andP ∗HP are in the form (4.4). Let

Y = Y1 ⊕ · · · ⊕ Yk ∈ Cn×n

be partitioned conformably, such that eachYj has the form

Yj =




Jp(α) if Xj is of the form (4.5) or (4.6),[
Jp(β) 0

0 Jp(γ )

]
if Xj is of the form (4.7)

for someα, β, γ ∈ C. ThenP−1XP andY commute andY obviously isP ∗HP -
normal. Clearly, the parametersα or β, γ of each blockYj can be chosen so thatY
is nonderogatory. �

If in each of the blocks (4.5), (4.6), and (4.7) the parameterm is equal to one, then
X is block ToeplitzH-normal. Note that in this case the form (4.4) is equivalent to
the canonical form for block ToeplitzH-normal operators given in [11].

In particular, if we consider a block of the form (4.5) for the casem = 1, then this
representation is unique, because a similarity transformation that leavesAj invariant
will also leaveSj invariant. However, this is not true if 1< m < n. (For invariants of
upper triangular Toeplitz matrices under simultaneous similarity, see [1].) Moreover,
form (4.5) does not always display the Jordan structure ofXj = Aj + Sj , and the di-
agonal blocks ofXj need not be indecomposable. To see this, consider the following
example.
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Example 12. Let p(t) = (δ + i)t 2 and

A =

0 1 0

0 0 1
0 0 0


 , H = ε


0 0 1

0 1 0
1 0 0


 ,

whereδ, ε = ±1. If X = p(A) = AX + SX, then

X =

0 0 δ+ i

0 0 0
0 0 0


 , AX =


0 0 δ

0 0 0
0 0 0


 , SX =


0 0 i

0 0 0
0 0 0


 .

Thus,AX andSX are already in the form (4.5). Note that the parameterδ is an in-
variant for the triple(AX, SX,H): It is easy to check that(AX,H) has the canonical
form

Ã =

0 1 0

0 0 0
0 0 0


 and H̃ =


 0 δε 0
δε 0 0
0 0 ε


 .

Obviously, for the four possible choices ofδ andε, these forms are mutually non-
equivalent. However, it is clear thatX = AX + SX is H-decomposable. (This can
be seen by applying a row and column permutation.) Moreover, the form does not
display the Jordan structure ofX.

This example shows that it is of interest to further reduce the blocks of the form
(4.4) so that the resulting form is unique and displays the Jordan structure ofX, and
such that the diagonal blocks of the form are indecomposable. This open problem is
related to the open questions posed in [11].

5. Conclusions

We have investigated conditions (1)–(92) that are equivalent toH-normality in the
caseH = I . Moreover, we have discussed classes ofH-normal matrices defined by
some of these conditions. We have focussed on classes that containH-self-adjoint,
H-skewadjoint, andH-unitary matrices and that are proper subclasses of the class
of H-normal matrices, in particular classes that are defined by one of the following
conditions listed in Section 3.2:

(17) There exists a polynomialp such thatX[∗] = p(X).
(91) There exists a polynomialp and anH-self-adjoint matrixA such thatX =

p(A).

Denoting by (n), (bt), and (t) the properties that a matrix isH-normal, is block Toep-
litz H-normal, and is triviallyH-normal, respectively, we have shown the following
implication scheme:

(t) ⇒ (17) ⇒ (bt) ⇒ (91) ⇒ (n).
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So far, matrices with the property (bt) is the largest class ofH-normal matrices for
which a canonical form is known.

Open problem. Find a complete classification for matrices that satisfy (91).
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